Delocalization of Acoustic Waves in a One-Dimensional Random Dimer Media

Show more

References

[1] P. W. Anderson, “Absence of Diffusion in Certain Random Lattices,” Physical Review, Vol. 109, No. 5, 1958, pp. 1492-1505. doi:10.1103/PhysRev.109.1492

[2] E. Abrahams, P. W. Anderson, D. C. Licciardello and T. V. Ramakrishnan, “Scaling Theory of Localization: Absence of Quantum Diffusion in Two Dimensions,” Physical Review Letters, Vol. 42, No. 10, 1979, pp. 673-676.
doi:10.1103/PhysRevLett.42.673

[3] P. L. Lee and T. V. Ramakrishnan, “Disordered Electronic Systems,” Reviews of Modern Physics, Vol. 57, No. 2, 1985, pp. 287-337. doi:10.1103/RevModPhys.57.287

[4] B. L. Altshuler, P. A. Lee and R. A. Webb, “Mesoscopic Phenomena in Solids,” Elsevier, Amsterdam, 1991.

[5] C. W. J. Beenhakker, “Random-Matrix Theory of Quantum Transport,” Reviews of Modern Physics, Vol. 69, No. 3, 1997, pp. 731-808.
doi:10.1103/RevModPhys.69.731

[6] N. F. Mott and W. D. Twose, “The Theory of Impurity Conduction,” Advances in Physics, Vol. 10, No. 38, 1961, pp. 107-163. doi:10.1080/00018736100101271

[7] P. Sheng, “Scattering and Localization of Classical Waves in Random Media,” World Scientific, Singapore, 1990.

[8] S. He and J. D. Maynard, “Detailed Measurements of Inelastic Scattering in Anderson Localization,” Physical Review Letters, Vol. 57, No. 25, 1986, pp. 3171-3174.
doi:10.1103/PhysRevLett.57.3171

[9] S. John, “Electromagnetic Absorption in a Disordered Medium near a Photon Mobility Edge,” Physical Review Letters, Vol. 53, No. 22, 1984, pp. 2169-2172.
doi:10.1103/PhysRevLett.53.2169

[10] J. D. Maynard, “Acoustical Analogs of Condensed-Matter Problems,” Reviews of Modern Physics, Vol. 73, No. 2, 2001, pp. 401-417.
doi:10.1103/RevModPhys.73.401

[11] M. M. Millonas, “Fluctuations and Order: The New Synthesis,” MIT Press, Boston, 1997.

[12] D. H. Dunlap, H. L. Wu and P. Phillips, “Absence of Localization in a Random-Dimer Model,” Physical Review Letters, Vol. 65, No. 1, 1990, pp. 88-91.
doi:10.1103/PhysRevLett.65.88

[13] H. L. Wu and P. Phillips, “Repulsive Binary Alloys and the Absence of Localization: Application to Fibonacci Lattices and Molecularly Based Electronic Filters,” Journal of Chemical Physics, Vol. 93, 1990, p. 7369.
doi:10.1063/1.459411

[14] H. L. Wu and P. Phillips, “Polyaniline Is a Random-Dimer Model: A New Transport Mechanism for Conducting Polymers,” Physical Review Letters, Vol. 66, No. 10, 1991, pp. 1366-1369.
doi:10.1103/PhysRevLett.66.1366

[15] H. L. Wu and P. Phillips, “Localization and Its Absence: A New Metallic State for Conducting Polymers,” Science, Vol. 252, No. 5014, 1991, pp. 1805-1812.
doi:10.1126/science.252.5014.1805

[16] A. Sanchez, E. Macia and F. Dominguez-Adame, “Suppression of Localization in Kronig-Penney Models with Correlated Disorder,” Physical Review B, Vol. 49, No. 1, 1994, pp. 147-157. doi:10.1103/PhysRevB.49.147

[17] E. Diez, R. Gomez-Alcala, F. Dominguez-Adame, A. Sanchez and G. P. Bermann, “Coherent Carrier Dynamics in Semiconductor Superlattices,” Physics Letters A, Vol. 240, No. 1-2, 1998, pp. 109-111.
doi:10.1016/S0375-9601(98)00023-1

[18] V. Bellani, E. Diez, R. Hey, L. Toni, L. Tarricone, G.B. Parravicini, F. Dominguez-Adame and R. Gomez Alcala, Physical Review Letters, Vol. 82, 1999, p. 2159.
doi:10.1103/PhysRevLett.82.2159

[19] O. Richoux, C. Depollier and J. Hardy, “Propagation of Mechanical Waves in a One-Dimensional Nonlinear Disordered Lattice,” Physical Review E, Vol. 73, No. 2, 2006, Article ID: 026611. doi:10.1103/PhysRevE.73.026611

[20] O. Richoux, C. Depollier, J. Hardy and A. Brezini, “Effects of Disorder and Nonlinearity on the Propagation of Classical Waves,” Journal of the Acoustical Society of America, Vol. 103, 1988, p. 2949.
doi:10.1121/1.422232

[21] O. Richoux, “Thèse de Doctorat,” Université du Maine, Le Mans, 1999.

[22] J. Bellisard, A. Formoso, R. Lima and D. Testard, “Quasiperiodic Interaction with a Metal-Insulator Transition,” Physical Review B, Vol. 26, No. 30, 1982, pp. 3024-3030.
doi:10.1103/PhysRevB.26.3024

[23] G. Theodorou and M. H. Cohen, “Extended States in a One-Demensional System with Off-Diagonal Disorder,” Physical Review B, Vol. 13, No. 10, 1982, pp. 4597-4601.
doi:10.1103/PhysRevB.13.4597

[24] P. K. Datta and K. Kundu, “Energy Transport in One-Dimensional Harmonic Chains,” Physical Review B, Vol. 51, No. 10, 1995, pp. 6287-6295.
doi:10.1103/PhysRevB.51.6287

[25] S. S. Albuquerque, F. A. B. F. de Moura and M. L. Lyra, “Vibrational Modes in Harmonic Chains with Diluted Disorder,” Physica A: Statistical Mechanics and Its Applications, Vol. 357, No. 1, 2005, pp. 165-172.
doi:10.1016/j.physa.2005.05.059

[26] M. Hilke and J. C. Flores, “Delocalization in Continuous Disordered Systems,” Physical Review B, Vol. 55, No. 16, 1997, pp. 10625-10630. doi:10.1103/PhysRevB.55.10625

[27] C. M. Soukoulis, J. V. José, E. N. Economou and P. Sen, “Magneto-Polarons in a Two-Dimensional Electron Inversion Layer on InSb,” Physical Review Letters, Vol. 50, No. 10, 1983, pp. 754-757.
doi:10.1103/PhysRevLett.50.754

[28] X. Huang, X, Wu and C. Gong, “Periodic Wave Functions and Number of Extended States in Random Dimer Systems,” Physical Review B, Vol. 55, No. 17, 1997, pp. 11018-11021. doi:10.1103/PhysRevB.55.11018

[29] M. Hilke, J. C. Flores and F. Dominguez-Adame, “Comment on ‘Periodic Wave Functions and Number of Extended States in Random Dimer Systems’,” Physical Review B, Vol. 58, No. 13, 1998, pp. 8837-8838.
doi:10.1103/PhysRevB.58.8837

[30] T. Hakobyan, D, Hakobyan, A. Sedrakyan, I. Gomez and F. Dominguez-Adame, “Delocalization of States in Two-Component Superlattices with Correlated Disorder,” Physical Review B, Vol. 61, No. 17, 2000, pp. 11432-11436.
doi:10.1103/PhysRevB.61.11432

[31] I. Gomez, F. Dominguez-Adame and E. Diez, “Nature of the Extended States in Random Dimer-Barrier Superlattices,” Physica B: Condensed Matte, Vol. 324, No. 1-4, 2002, pp. 235-239. doi:10.1016/S0921-4526(02)01319-4

[32] K. Ishii, “Localization of Eigenstates and Transport Phenomena in the One-Dimensional Disordered System,” Progress of Theoretical Physics Supplement, Vol. 53, 1973, pp. 77-138. doi:10.1143/PTPS.53.77

[33] S. Sil, S. N. Karmakar, R. K. Moitra and A. Chakrabarti, “Extended States in One-Dimensional Lattices: Application to the Quasiperiodic Copper-Mean Chain,” Physical Review B, Vol. 48, No. 6, 1993, pp. 4192-4195.
doi:10.1103/PhysRevB.48.4192