Stability of Triangular Points of the Generalized Photogravitational Robes Restricted Three-Body Problem

Affiliation(s)

Department of Statistics and Mathematical Sciences, Kwara State University, Malete-Ilorin, Nigeria.

Department of Statistics and Mathematical Sciences, Kwara State University, Malete-Ilorin, Nigeria.

ABSTRACT

The linear stability of the triangular points was studied for the Robes restricted three-body problem when the bigger primary (rigid shell) is oblate spheroid and the second primary is radiating. The critical mass obtained depends on the oblateness of the rigid shell and radiation of the second primary as well as the density parameter *k*. The stability of the triangular points depends largely on the values of *k*. The destabilizing tendencies of the oblateness and radiation factors were enhanced when *k *> 0 and weakened for *k* < 0.

Cite this paper

A. Raheem, "Stability of Triangular Points of the Generalized Photogravitational Robes Restricted Three-Body Problem,"*Journal of Modern Physics*, Vol. 4 No. 6, 2013, pp. 864-868. doi: 10.4236/jmp.2013.46117.

A. Raheem, "Stability of Triangular Points of the Generalized Photogravitational Robes Restricted Three-Body Problem,"

References

[1] H. A. G. Robe, Celestial Mechanics, Vol. 16, 1977, pp. 345-351. doi:10.1007/BF01232659

[2] A. K. Shrivastava and D. Garain, Celestial Mechanics and Dynamical Astronomy, Vol. 51, 1991, pp. 67-73. doi:10.1007/BF02426670

[3] A. R. Plastino and A. Plastino, Celestial Mechanics and Dynamical Astronomy, Vol. 61, 1995, 197-206. doi:10.1007/BF00048515

[4] C. M. Giordano, A. R. Plastino and A. Plastino, Celestial Mechanics and Dynamical Astronomy, Vol. 66, 1997, pp. 229-242. doi:10.1007/BF00054966

[5] P. P. Hallan and N. Rana, Indian Journal of Pure and Applied Mathematics, Vol. 35, 2004, pp. 401-413.

[6] P. P. Hallan and K. B. Mangang, Planetary and Space Science, Vol. 55, 2007, pp. 512-516. doi:10.1016/j.pss.2006.10.002

[7] A. AbdulRaheem and J. Singh, Astronomical Journal, Vol. 131, 2006, pp. 1880-1885. doi:10.1086/499300

[1] H. A. G. Robe, Celestial Mechanics, Vol. 16, 1977, pp. 345-351. doi:10.1007/BF01232659

[2] A. K. Shrivastava and D. Garain, Celestial Mechanics and Dynamical Astronomy, Vol. 51, 1991, pp. 67-73. doi:10.1007/BF02426670

[3] A. R. Plastino and A. Plastino, Celestial Mechanics and Dynamical Astronomy, Vol. 61, 1995, 197-206. doi:10.1007/BF00048515

[4] C. M. Giordano, A. R. Plastino and A. Plastino, Celestial Mechanics and Dynamical Astronomy, Vol. 66, 1997, pp. 229-242. doi:10.1007/BF00054966

[5] P. P. Hallan and N. Rana, Indian Journal of Pure and Applied Mathematics, Vol. 35, 2004, pp. 401-413.

[6] P. P. Hallan and K. B. Mangang, Planetary and Space Science, Vol. 55, 2007, pp. 512-516. doi:10.1016/j.pss.2006.10.002

[7] A. AbdulRaheem and J. Singh, Astronomical Journal, Vol. 131, 2006, pp. 1880-1885. doi:10.1086/499300