AJAC  Vol.4 No.6 A , June 2013
Differential Pulse Voltammetric Studies on Lamivudine: An Antiretroviral Drug
Abstract: Lamivudine (also known as 3TC) is a dideoxynucleoside analogue, which undergoes intracellular phosphorylation in the putative active metabolite, lamivudine triphosphate. Lamivudine triphosphate prevents HIV replication by competitively inhibiting viral reverse transcriptase. Lamivudine has been extensively used in the treatment of HIV patients owing to its antiretroviral activity. For the determination of lamivudine in pharmaceuticals, an analytical methodology using voltammetry was developed. Lamivudine was reduced at a hanging mercury drop electrode (HMDE) at –1.16 V vs Ag/AgCl at pH 2.0. The influence of electroanalytical parameters such as scan rate (20 mV.s–1), amplitude (50 mV), nature of the support electrolyte (Clark-Lubs), and pH (2.0) on the voltammetric signal was optimized. Under these optimized conditions, the method had been validated using pharmaceutical formulations. The lamivudine peak current varied linearly with its concentration from 1.15 to 10.40 mg.L–1, detection and determination limits of 0.46 and 1.0 mg.L–1, respectively, and recovery of 95.15% with a relative standard deviation of 1.10%.
Cite this paper: K. Leandro, J. Moreira and P. Farias, "Differential Pulse Voltammetric Studies on Lamivudine: An Antiretroviral Drug," American Journal of Analytical Chemistry, Vol. 4 No. 6, 2013, pp. 47-51. doi: 10.4236/ajac.2013.46A007.

[1]   K. Parfitt, “The Complete Drug Reference,” 32nd Edition, Pharmaceutical Press, London, 1999, pp. 629-630.

[2]   C. M. Perry and D. Faulds, “Lamivudine. A Review of Its Antiviral Activity, Pharmacokinetic Properties and Therapeutic Efficacy in the Management of HIV Infection,” Drugs, Vol. 53, No. 4, 1997, pp. 657-680. doi:10.2165/00003495-199753040-00008

[3]   E. De Clercq, “Antiviral Drugs: Current State of the Art,” Journal of Clinical Virology, Vol. 22, No. 1, 2001, pp. 73-89. doi:10.1016/S1386-6532(01)00167-6

[4]   J. W. Beach, “Chemotherapeutic Agents for Human Immunodeficiency Vírus Infection: Mechanism of Action, Pharmacokinetics, Metabolism, and Adverse Reactions,” Clinical Therapeutics, Vol. 20, No. 1, 1998, pp. 2-25. doi:10.1016/S0149-2918(98)80031-3

[5]   D. A. Kumar, G. S. Rao and J. V. L. N. S. Rao, “Simultaneous Determination of Lamivudine, Zidovudine and Abacavir in Tablet Dosage Forms by HPLC Method,” E-Journal of Chemistry, Vol. 7, No. 1, 2010, pp. 180-184. doi:10.1155/2010/473798

[6]   P. Chandra, A. S. Rathore, L. Sathivanarayanan and K. R. Mahadik, “Application of High-Performance Thin-Layer Chromatographic Method for the Simultaneous Determination of Lamivudine and Tenofovir Disoproxilfumarate in Pharmaceutical Dosage Form,” Journal of the Chilean Chemical Society, Vol. 56, No. 2, 2011, pp. 702-705. doi:10.4067/S0717-97072011000200017

[7]   S. Notari, M. Sergi, C. Montesano, J. Ivanovic, P. Narciso, L. P. Pucillo and P. Ascenzi, “Simultaneous Determination of Lamivudine, Lopinavir, Ritonavir, and Zidovudine Concentration in Plasma of HIV-Infected Patients by HPLCMS/MS,” IUBMB Life, Vol. 64, No. 5, 2012, pp. 443- 449. doi:10.1002/iub.1025

[8]   A. T. C. Oliveira, D. P. Santana, J. R. B. Alencar, L. A. S. Ribas, D. B. Monteiro, B. A. Santos, A. D. P. Oliveira and A. K. M. Santana, “Cleaning Validation Applied to the Production of Antiretroviral Drugs: Determination of Zidovudine and Lamivudine Residues on Manufacturing Equipment,” Latin American Journal of Pharmacy, Vol. 31, No. 2, 2012, pp. 315-320.

[9]   C. Parthiban, M. B. Raju, M. Sudhakar and D. S. Kumar, “Simultaneous Estimation and Validation for Determination of Lamivudine and Zidovudine in Human Plasma by LCMS/MS Method,” E-Journal of Chemistry, Vol. 9, No. 2, 2012, pp. 598-607. doi:10.1155/2012/716963

[10]   J. E. Rower, B. Klein, L. R. Bushman and P. L. Anderson, “Validation of a Sensitive LC/MS/MS Method for the Determination of Zidovudine and Lamivudine in Human Plasma,” Biomedical Chromatography, Vol. 26, No. 1, 2012, pp. 12-20. doi:10.1002/bmc.1617

[11]   K. Basavaiah, B. C. Somashekar and V. Ramakrishna, “Rapid Titrimetric and Spectrophotometric Assay Methods for the Determination of Lamivudine in Pharmaceuticals Using Iodate and Two Dyes,” Journal of Analytical Chemistry, Vol. 62, No. 6, 2007, pp. 542-548. doi:10.1134/S1061934807060081

[12]   A. B. Babu, G. Ramu, C. M. Krishna, S. B. Reddy and C. Rambabu, “Spectrophotometric determination of lamivudine in Pure and Tablet Forms,” E-Journal of Chemistry, Vol. 9, No. 2, 2012, pp. 569-575. doi:10.1155/2012/627617

[13]   B. Dogan, B. Uslu, S. Suzen and S. A. Ozkan, “Electrochemical Evaluation of Nucleoside Analogue Lamivudine in Pharmaceutical Dosage Forms and Human Serum,” Electroanalysis, Vol. 17, No. 20, 2005, pp. 1886-1894. doi:10.1002/elan.200503307

[14]   R. Jain, N. Jadon and K. Radhapyari, “Cathodic Adsorptive Stripping Voltammetric Studies on Lamivudine: An Antiretroviral Drug,” Journal of Colloid and Interface Science, Vol. 313, No. 1, 2007, pp. 254-260. doi:10.1016/j.jcis.2007.04.003

[15]   INMETRO, “Orientação Sobre Validação de Métodos de Ensaios Químicos: DOQ-CGCRE-008. Revisão 02. Rio de Janeiro,” 2007.

[16]   The United States Pharmacopeia, “USP 31 NF 26. Rockville: United States Pharmacopeia Convention,” 2008.

[17]   “The Merck Index,” 13th Edition, Merck & Co. Inc., White House Station, 2001.