AJAC  Vol.4 No.6 A , June 2013
A New Biosensor for Glucose Based on Screen Printed Carbon Electrodes Modified with Tin (IV)-Oxide

Tin (IV) oxide was used as a bulk mediator in carbon paste and carbon ink screen-printed electrodes to improve the better performance of the carbon electrodes for the detection of hydrogen peroxide in comparison with unmodified electrodes. A new glucose biosensor developed from modified carbon paste electrode and coated with glucose oxidase entrapped in Nafion was investigated with a flow injection system. The biosensor could be operated under physiological conditions (pH 7.5, 0.1 M phosphate buffer), with an operating potential of ?200 mV (vs. Ag/AgCl), a flow rate of the carrier of 0.2 mL/min. and an injection volume of 100 μL. The amperometric response of the biosensor showed good linearity up to 200 mg/L with a detection limit (3σ) of 6.8 mg/L. The relative standard deviation for the repeatability of measurements for 100 mg/L glucose was 2.9% (n = 10 measurements) and the corresponding reproducibility was 12% (n = 5 sensors). The effect of all investigated interferences (uric acid, paracetamol, xanthine, hypoxanthine and ascorbic acid) was not fatal and could be eliminated by the use of the standard addition method. The new biosensor was successfully applied to the determination of glucose in human blood plasma.

Cite this paper: L. Berisha, K. Kalcher, A. Hajrizi and T. Arbneshi, "A New Biosensor for Glucose Based on Screen Printed Carbon Electrodes Modified with Tin (IV)-Oxide," American Journal of Analytical Chemistry, Vol. 4 No. 6, 2013, pp. 27-35. doi: 10.4236/ajac.2013.46A004.

[1]   N. W. Beyene, P. Kotzian, K. Schachl, H. Alemuc, E. Turkusic, A. Copra, H. Moderegger, I. Svancara, K. Vytras and K. Kalcher, “(Bio)Sensors Based on Manganese Dioxide-Modified Carbon Substrates: Retrospections, Further Improvements and Applications,” Talanta, Vol. 64, No. 5, 2004, pp. 1151-1159. doi:10.1016/j.talanta.2004.03.068

[2]   G. Cui, J. Hyun Y. J. Yoo, S. W. Lee, H. Nam and G. S. Cha, “Differential Thick-Film Amperometric Glucose Sensor with an Enzyme-Immobilized Nitrocellulose Membrane,” Electroanalysis, Vol. 13, No. 3, 2001, pp. 224- 228. doi:10.1002/1521-4109(200103)13:3<224::AID-ELAN224>3.0.CO;2-N

[3]   J. Wang, X. Zhang and L. Chen, “Comparison of Glucose Enzyme Electrodes Based on Dispersed Rhodium Particles and Cupric Hexacyanoferrate within Carbon Paste Transducers,” Electroanalysis, Vol. 12, No. 16, 2000, pp. 1277-1281. doi:10.1002/1521-4109(200011)12:16<1277::AID-ELAN1277>3.0.CO;2-M

[4]   P. Kotzian, P. Brazdilova, K. Kalcher, K. Handlir and K. Vytras, “Oxides of Platinum Metal Group as Potential Catalysts in Carbonaceous Amperometric Biosensors Based on Oxidases,” Sensors and Actuators B, Vol. 124, No. 2, 2007, pp. 297-302. doi:10.1016/j.snb.2006.12.032

[5]   K. Schachl, H. L. Alemu, K. Kalcher, J. Jezkova, I. Svancara and K. Vytras, “Amperometric Determination of Hydrogen Peroxide with a Manganese Dioxide-Modified Carbon Paste Electrode Using Flow Injection Analysis,” Analyst, Vol. 122, No. 9, 1997, pp. 985-989. doi:10.1039/a701723e

[6]   R. Garjonyte and A. Malinauskas, “Amperometric Sensor for Hydrogen Peroxide, Based on Cu2O or CuO Modified Carbon Paste Electrodes,” Fresenius’ Journal of Analytical Chemistry, Vol. 360, No. 1, 1998, pp. 122-123. doi:10.1007/s002160050655

[7]   J. Hrbac, V. Halouzka, R. Zboril, K. Papadopoulos and T. Triantis, “Carbon Electrodes Modified by Nanoscopic Iron(III) Oxides to Assemble Chemical Sensors for the Hydrogen Peroxide Amperometric Detection,” Electroanalysis, Vol. 19, No. 17, 2007, pp. 1850-1854. doi:10.1002/elan.200703938

[8]   P. Kotzian, P. Brázdilová, S. Rezková, K. Kalcher and K. Vytras, “Amperometric Glucose Biosensor Based on Rhodium Dioxide-Modified Carbon Ink,” Electroanalysis, Vol. 18, No. 15, 2006, pp. 1499-1504. doi:10.1002/elan.200503549

[9]   P. Kotzian, P. Brázdilová, K. Kalcher and K. Vytras, “Determination of Hydrogen Peroxide, Glucose and Hypoxanthine Using (Bio)Sensors Based on Ruthenium Dioxide-Modified Screen-Printed Electrodes,” Analytical Letters, Vol. 38, No. 7, 2005, pp. 1099-1113. doi:10.1081/AL-200057205

[10]   A. Veseli, A. Hajrizi, T. Arbneshi and K. Kalcher, “A New Amperometric Glucose Biosensor Based on Screen Printed Carbon Electrodes with Rhenium(IV)—Oxide as a Mediator,” Journal of Electrochemical Science and Engineering, Vol. 2, No. 4, 2012, pp. 199-210. doi:10.5599/jese.2012.0023

[11]   American Diabetes Association, “Standards of Medical Care in Diabetes,” Diabetes Care, Vol. 29, No. S1, 2006, pp. 54-542.

[12]   J. P. Moran, L. Cohen, J. M. Greene, G. Xu, E. B. Feldman, C. G. Hames and D. S. Feldman, “Plasma Ascorbic Acid Concentrations Relate Inversely to Blood Pressure in Human Subjects,” American Journal of Clinical Nutrition, Vol. 57, No. 2, 1993, pp. 213-217.

[13]   K. K. Melinda and B. L. Firestein, “Altered Uric Acid Levels and Disease States,” The Journal of Phamacology and Experimental Therapeutics, Vol. 324, No. 1, 2008, pp. 1-7.

[14]   K. G. M. M. Alberti and P. Z. Zimmet, “Definition, Diagnosis and Classification of Diabetes Mellitus and its Complications. Part 1: Diagnosis and Classification of Diabetes Mellitus Provisional Report of a WHO Consultation,” Diabetic Medicine, Vol. 15, No. 7, 1998, pp. 539- 553. doi:10.1002/(SICI)1096-9136(199807)15:7<539::AID-DIA668>3.0.CO;2-S