AJAC  Vol.4 No.6 A , June 2013
Challenges in the Development of Film-Forming Additives for Lithium Ion Battery: A Review
Abstract: Electrolytes additives are ubiquitous and indispensable in all electrochemical devices. In this sense, the principle and the classification of film-forming additives for lithium ion secondary batteries are described. The film formation mechanism and research progress of the pyrazole derivatives, organic halogenide, esters and derivatives, boron compounds and inorganic compounds are introduced. Emphasis is focused on the principles and film-forming mechanisms of each additive. The development of film-forming additives is forecasted and prospected.
Cite this paper: Y. Zhang, Y. Zhang, S. Xia, P. Dong, L. Jin and J. Song, "Challenges in the Development of Film-Forming Additives for Lithium Ion Battery: A Review," American Journal of Analytical Chemistry, Vol. 4 No. 6, 2013, pp. 7-12. doi: 10.4236/ajac.2013.46A002.

[1]   N. Kamaya, K. Homma, Y. Yamakawa, et al., “A Lithium Superionic Conductor,” Nature, Vol. 31, No. 10, 2011, pp. 682-686. doi:10.1038/nmat3066

[2]   P. Verma, P. Maire and P. Novák, “A Review of the Features and Analyses of the Solid Electrolyte Interphase in Li-Ion Batteries,” Electrochim Acta, Vol. 55, No. 22, 2010, pp. 6332-6341. doi:10.1016/j.electacta.2010.05.072

[3]   S. H. Fang, Y. F. Tang, X. Y. Tai, et al., “One Ether-Functionalized Guanidinium Ionic Liquid as New Electrolyte for Lithium Battery,” Journal of Power Sources, Vol. 196, No. 3, 2011, pp. 1433-1441. doi:10.1016/j.jpowsour.2010.08.012

[4]   N. Shao, X. G. Sun, S. Dai, et al., “Oxidation Potentials of Functionalized Sulfone Solvents for High-Voltage Li-Ion Batteries: A Computational Study,” Journal of Physical Chemistry B, Vol. 116, No. 10, 2012, pp. 3235-3238. doi:10.1021/jp211619y

[5]   E.-G. Shim, T.-H. Ham, J.-G. Kim, et al., “Effects of Functional Electrolyte Additives for Li-Ion Batteries,” Journal of Power Sources, Vol. 172, No. 2, 2007, pp. 901-907. doi:10.1016/j.jpowsour.2007.04.089

[6]   X. K. Nonaqueous, “Liquid Electrolytes for Lithium-Based Rechargeable Batteries,” Chemical Reviews, Vol. 104, No. 10, 2004, pp. 4303-4418. doi:10.1021/cr030203g

[7]   K. Kubota, T. Nohira and R. Hagiwara, “New Inorganic Ionic Liquids Possessing Low Melting Temperatures and Wide Electrochemical Windows: Ternary Mixtures of Alkali Bis(Fluorosulfonyl)Amides,” Electrochim Acta, Vol. 66, No. 1, 2012, pp. 320-324. doi:10.1016/j.electacta.2012.01.097

[8]   I. Masayuki, Y. Sachiko, K. Nao, et al., “Electrochemical Impedance of Electrolyte of Electrolyte/Electrode Interfaces of Lithium-Ion Rechargeable Batteries: Effects of Additives to the Electrolyte on Negative Electrode,” Electrochim Acta, Vol. 51, No. 8-9, 2006, pp. 1629-1635.

[9]   Smori, Hasahima and Hsuzukietal, “Chemical Properties of Various Organical Electrolytes for Lithium Rechargeablebatteries,” Journal of Power Sources, Vol. 68, No. 1, 1997, pp. 59-64. doi:10.1016/S0378-7753(97)02619-0

[10]   E. Peled, “The Electrochemical Behavior of Alkli and Alkaline Earth Metals in Nonaqueous Battery Systems— The Solid Electrolyte Interphase,” Journal of Electrochemistry Socity, Vol. 126, No. 12, 1979, pp. 2047-2051. doi:10.1149/1.2128859

[11]   Y. Ein-Eli, B. Markovsky, D. Aurbach, et al., “The Dependence of the Performance of Li-C Intercalation Anodes f or Li-Ion Secondary Batteries on the Electrolyte Solution Composition,” Electrochimica Acta, Vol. 39, No. 17, 1994, pp. 2559-2569. doi:10.1016/0013-4686(94)00221-5

[12]   A. Meitav and E. Peled, “Solid Electrolyte Interphase (SEI) Electrode Part V: The Formation and Properties of the Solid Electrolyte Interphase on Calcium in Thionyl-Chloride Solutions,” Electrochimica Acta, Vol. 33, No. 8, 1988, pp. 1111-1121. doi:10.1016/0013-4686(88)80202-0

[13]   G. Negasuramanian, P. E. Eled, A. I. Attia, et al., “Composite Solid Electrolyte for Li Battery Applications,” Solid State Ionics, Vol. 67, No. 1-2, 1993, pp. 51-56. doi:10.1016/0167-2738(93)90308-P

[14]   D. Aurbach and H. Gottlieb, “The Electrochemical Behavior of Selected Polar Aprotic Systems,” Electrochimica Acta, Vol. 34, No. 2, 1989, pp. 141-156. doi:10.1016/0013-4686(89)87079-3

[15]   R. J. Chen, F. Wu, L. Li, et al., “Butylene Sulfite as a Film- Forming Additive to Propylene Carbonate-Based Electrolytes for Lithium Ion Batteries,” Journal of Power Sources, Vol. 172, No. 1, 2007, pp. 395-403. doi:10.1016/j.jpowsour.2007.05.078

[16]   H. Yoshitake, K. Abe, T. Kitakura, et al., “The Effect of Nano-Sized SEI Film Formed by Vinyl Acetate Additive for Li-Ion Batteries,” Chemistry Letters, Vol. 32, No. 2, 2003, pp. 134-135. doi:10.1246/cl.2003.134

[17]   F. Kito, S. Hideo, S. Sayaka, et al., “Characteristics of the Electrolyte with Fluoro Organic Lithium Salts,” Journal of Power Sources, Vol. 90, No. 1, 2000, pp. 27-32. doi:10.1016/S0378-7753(00)00443-2

[18]   P. Johansson and P. Jacobsson, “New Lithium Salts on the Computer: Fiction or Fact,” Electrochimical Acta, Vol. 46, No. 10-11, 2001, pp. 1545-1552. doi:10.1016/S0013-4686(00)00751-9

[19]   E. Peled, D. Golding, G. Ardel, et al., “Advanced Model for Solid Electrolyte Interphase Electrode in Liquid and Polymer Electrolytes,” Journal of Electrochemical Society, Vol. 144, No. 8, 1997, pp. 208-210. doi:10.1149/1.1837858

[20]   Z. X. Shu and R. S. McMillan, “Use of Chloroethylene Carbonate as Electrolyte Solvent for a Graphite Anode in a Lithium-Ion Battery,” Journal of Electrochemical Society, Vol. 143, No. 7, 1996, pp. 2230-2235. doi:10.1149/1.1836985

[21]   K. Ome and T. Tan, “Non-Aqueous Electrolyte Solution and Its Use in Secondary Battery,” 2000.

[22]   A. Abouimrane, S. A. Odom, H. Tavassol, et al., “3-Hexylthiophene as a Stabilizing Additive for High Voltage Cathodes in Lithium-Ion Batteries,” Journal of Electrochemical Society, Vol. 160, No. 2, 2013, pp. A268-A271.

[23]   H. Tavassol, J. W. Buthker, L. A. Ferguson, et al., “Solvent Oligomerization during SEI Formation on Model Systems for Li-Ion Battery Anodes,” Journal of Electrochemical Society, Vol. 159, No. 2, 2012, p. A730.

[24]   D. Kam, K. Kim, et al., “Studies on Film Formation on Cathodes Using Pyrazole Derivatives as Electrolyte Additives in the Li-Ion Battery,” Electrochemistry Communications, Vol. 11, No. 8, 1999, pp. 2230-2235. doi:10.1016/j.elecom.2009.06.020

[25]   S. Y. Chen, Z. X. Wang, et al., “A Novel Flame Retardant and Film-Forming Electrolyte Additive for Lithium Ion Batteries,” Journal of Power Sources, Vol. 187, No. 1, 2009, pp. 229-232. doi:10.1016/j.jpowsour.2008.10.091

[26]   F. Wu, Q. Z. Zhu, L. Li, et al., “A Diisocyanate/Sufone Binary Electrolyte Based on Lithium Difluoro(Oxalate)Borate for Lithium Batteries,” Journal of Material Chemistry A, Vol. 1, No. 11, 2013, pp. 3659-3666.

[27]   G.-B. Han, R. Myuun-Hyun, K. Y. Cho, et al., “Effect of Succinic Anhydride as an Electrolyte Additive on Electrochemical Characteristics of Silicon Thin-Film Electrode,” Journal of Power Sources, Vol. 195, No. 11, 2010, pp. 3709-3714. doi:10.1016/j.jpowsour.2009.11.142

[28]   B. Simon and J. P. Boeuve, “Rechargeable Lithium Electrochemical Cell,” US Patent 5626981, 1997.

[29]   J. Barker and F. Gao, “Carbonaceous Electrode and Compatible Electrolyte Solvent,” US Patent 5712059, 1998.

[30]   Y. Naruse and S. Fujita, “Non-Aqueous Liuid Electrolyte Secondary Cell,” US Patent 5714281, 1998.

[31]   D. Aurbach, K. Gamolsky, B. Markovsky, et al., “On the Use of Vinylene Carbonate(VC) as an Additive to Electrolyte Solutions for Li-Ion Batteries,” Electrchim Acta, Vol. 47, No. 9, 2002, pp. 1423-1439. doi:10.1016/S0013-4686(01)00858-1

[32]   Z. X. Shu, R. S. Mcmillan, J. J. Murray, et al., “Use of Chloro Chylene Carbonate as an Electrolyte Solvent for a lithium Ion Batter Containing a Graphite Anode,” Journal of Electrochimica Society, Vol. 142, No. 7, 1995, pp. L161- L162.

[33]   H. X. Xiao, B. C. Li, S. Wei, et al., “Gamma-Crotonlatione as an Electrolyte for Improving the Cyclability of MCMB Electrode,” Journal of Power Sources, Vol. 174, No. 2, 2007, pp. 784-788. doi:10.1016/j.jpowsour.2007.06.148

[34]   K. Xu, S. S. Zhang, T. R. Jow, et al., “LiBOB as Salt for Lithium-Ion Batteries: A Possible Solution for High Temperature Operation,” Electrochem Solid-State Letters, Vol. 5, No. 1, 2002, pp. A26-A29. doi:10.1149/1.1426042

[35]   U. Wietelmann, U. Lischka and M. Wegner, “Lithium Bisoxalatoborate, the Production Thereof and Its Use as a Conducting Salt,” US Patent 6506516 B1, 2003.

[36]   K. Xu, S. S. Zhang, B. A. Poese, et al., “Lithium Bis(Oxalato)Borate Stabilizes Graphite Anode in Propylene Carbonate,” Electrochem Solid-State Letters, Vol. 5, No. 11, 2002, pp. A259-A262. doi:10.1149/1.1510322

[37]   S. Wang, W. H. Qiu, T. Li, et al., “Properties of Lithium LiBOB as a Lithium Salt and Cycle Performance in LiMn2O4 Half Cell,” International Journal of Electrochem Science, Vol. 1, No. 1, 2006, pp. 250-257.

[38]   X.-L. Tan, X.-Q. Cheng, Y.-L. Ma, et al., “Film Formation and Cycleability of LiBOB-Based Electrolyte,” Acta Physico-Chimica Sinica, Vol. 25, No. 10, 2009, pp. 1967- 1971.

[39]   D. Aurbach, Y. E. Ely, O. Clusid, et al., “The Correlation between the Surface Chemistry and the Performance of Li- Carbon Intercalation Anodes for Rechargeable ‘Rocking- Chair’ Type Batteries,” Journal of Electrochimica Society, Vol. 141, No. 3, 1994, pp. 603-611.

[40]   T. Osaka, T. Momma and Y. Matsumoto, “Surface Charactierization of Electrodeposited Lithium Anode with Enhaced Cycleability Obtained by CO2 Addition,” Journal of Electrochemical Society, Vol. 144, No. 5, 1997, pp. 1709-1713. doi:10.1149/1.1837665

[41]   J. O. Besenhard, M. Winter, J. Yang, et al., “Filming Mechanism of Lithium-Carbon Anodes in Organic and Inorganic Electrolytes,” Journal of Power Sources, Vol. 54, NO. 2, 1995, pp. 3709-3714. doi:10.1016/0378-7753(94)02073-C

[42]   S. Jee-Sun, H. Chi-Hwan, J. Un-Ho, et al., “Effect of Li2CO3 Additive on Gas Generation in Lithium-Ion Batteries,” Power Sources, Vol. 109, No. 1, 2002, pp. 47-52. doi:10.1016/S0378-7753(02)00039-3

[43]   H. H. Zheng, Y. B. Fu, H. C. Zhang, et al., “Potassium Salts: Electrolyte Additives for Enhancing Electrochemical Performances of Natural Graphite Anodes,” Journal of Electrochemical Solid-State Letters, Vol. 9, No. 3, 2006, pp. A115-A119. doi:10.1149/1.2161447