AJAC  Vol.4 No.6 , June 2013
Optimization of Chromium (Vi) Removal by Donnan Dialysis

The removal of chromium (VI) from aqueous solutions by Donnan dialysis has been investigated in this paper. In this process, two anion-exchange membranes (AEMs) were used: Selemion? AMV and Neosepta? AFN. The amount of chromium (VI) removed was determined in terms of the following parameters: initial concentration of chromium (VI), type of anion-exchange membrane, concentration of counter-ion and magnetic stirring rate. A 24 full factorial design analysis was performed to screen the parameters affecting the Cr (VI) removal efficiency. Using the experimental results, a linear mathematical model representing the influence of the different parameters as well as their interactions was obtained. Analysis of the variance (ANOVA), the F-test and the student’s test shows that the type of anion-exchange membrane is the most significant parameter affecting the chromium (VI) removal. The statistical analysis of the experimental data assumes it to be a normal distribution.

Cite this paper: I. Marzouk, L. Dammak, L. Chaabane and B. Hamrouni, "Optimization of Chromium (Vi) Removal by Donnan Dialysis," American Journal of Analytical Chemistry, Vol. 4 No. 6, 2013, pp. 306-313. doi: 10.4236/ajac.2013.46039.

[1]   D. E. Kimbrough, Y. Cohen, A. M. Winer, L. Creelman and C. A. Mabuni, “Critical Assessment of Chromium in the Environment,” Critical Reviews in Environmental Science and Technology, Vol. 29, No. 1, 1999, pp. l-46. doi:10.1080/10643389991259164

[2]   V. K. Gupta, M. Gupta and S. Sharma, “Process Development for the Removal of Lead and Chromium from Aqueous Solutions using Red Mud—An Aluminium Industry Waste,” Water Research, Vol. 35, No. 5, 2001, pp. 1125- l134. doi:10.1016/S0043-1354(00)00389-4

[3]   J. W. Paterson, “Wastewater Treatment Technology,” Ann Arbour Science, Michigan, 1975.

[4]   G. Tiravanti, D. Petruzzelli and R. Passino, “Pretreatment of Tannery Wastewaters by an Ion Exchange Process for Cr (III) Removal and Recovery,” Water Science Technology, Vol. 36, No. 2-3, 1997, pp. 197-207. doi:10.1016/S0273-1223(97)00388-0

[5]   S. Rengaraj, K. H. Yeon and S. H. Moon, “Removal of Chromium from Water and Wastewater by Ion Exchange Resins,” Journal of Hazardous Materials, Vol. 87, No. 1-3, 2001, pp. 273-287. doi:10.1016/S0304-3894(01)00291-6

[6]   S. Rengaraj, K. H. Yeon, S. Y. Kang, J. U. Lee, K. W. Kim and S. H. Moon, “Studies on Adsorptive Removal of Co(II), Cr(III) and Ni(II) by IRN77 Cation-Exchange Resin,” Journal of Hazardous Materials, Vol. 92, No. 2, 2002, pp. 185-198. doi:10.1016/S0304-3894(02)00018-3

[7]   S. Rengaraj, C. K. Joo, Y. Kim and J. Yi, “Kinetics of Removal of Chromium from Water and Electronic Process Wastewater by Ion Exchange Resins: 1200H, 1500H and IRN97H,” Journal of Hazardous Materials, Vol. 102, No. 2, 2003, pp. 257-275. doi:10.1016/S0304-3894(03)00209-7

[8]   D. Petruzzelli, R. Passino and G. Tiravanti, “Ion Exchange Process for Chromium Removal and Recovery from Tannery Wastes,” Industrial & Engineering Chemistry Research, Vol. 34, No. 8, 1995, pp. 2612-2617. doi:10.1021/ie00047a009

[9]   F. Gode and E. Pehlivan, “Sorption of Cr (III) onto Chelating b-DAEG-sporopollenin and CEP-Sporopollenin Resins,” Bioresource Technology, Vol. 98, No. 4, 2007, pp. 904-911. doi:10.1016/j.biortech.2006.02.043

[10]   C. A. Kozlowski and W. Walkowiak, “Removal of Chromium (VI) from Aqueous Solutions by Polymer Inclusion Membranes,” Water Research, Vol. 36, No. 19, 2002, pp. 4870-4876. doi:10.1016/S0043-1354(02)00216-6

[11]   H. Shaalan, M. Sorour and S. Tewfik, “Simulation and Optimization of a Membrane System for Chromium Recovery from Tanning Wastes,” Desalination, Vol. 141, No. 3, 2001, pp. 315-324. doi:10.1016/S0011-9164(01)85008-6

[12]   G. Ghosh and P. K. Bhattacharya, “Hexavalent Chromium Ion Removal through Micellar Enhanced Ultrafiltration,” Chemical Engineering Journal, Vol. 119, No. 1, 2006, pp. 45-53. doi:10.1016/j.cej.2006.02.014

[13]   H. Ozaki, K. Sharma and W. Saktaywin, “Performance of an Ultra-Low Pressure Reverse Osmosis Membrane (ULPROM) for Separating Heavy Metal: Effects of Interference Parameters,” Desalination, Vol. 144, No. 1-3, 2002, pp. 287-294. doi:10.1016/S0011-9164(02)00329-6

[14]   M. Muthukrishnan and B. K. Guha, “Effect of pH on Rejection of Hexavalent Chromium by Nanofiltration,” Desalination, Vol. 219, No. 1-3, 2008, pp. 171-178.

[15]   K. A. Matis and P. Mavros, “Recovery of Metals by Ion Flotation from Dilute Aqueous Solutions,” Separation and Purification Methods, Vol. 20, No. 1, 1991, pp. 1-48. doi:10.1080/03602549108021407

[16]   J. R. Parga, D. L. Cocke, V. Valverde, J. A. G. Gomes, M. Kesmez, H. Moreno, M. Weir and D. Mencer, “Characterization of Electrocoagulation for Removal of Chromium and Arsenic,” Chemical Engineering & Technology, Vol. 28, No. 5, 2005, pp. 605-612. doi:10.1002/ceat.200407035

[17]   E. Salazar, M. I. Ortiz and A. M. Urtiaga, “Equilibrium and Kinetics of Cr (VI) Extraction with Aliquat 336,” Industrial & Engineering Chemistry Research, Vol. 31, No. 6, 1992, pp. 1516-1522.

[18]   Z. Song, C. J. Williams and R. G. J. Edyvean, “Sedimentation of Tannery Wastewater,” Water Research, Vol. 34, No. 7, 2000, pp. 2171-2176. doi:10.1016/S0043-1354(99)00358-9

[19]   J. M. N. Chen and O. J. N. Hao, “Microbial Chromium (VI) Reduction,” Critical Reviews in Environmental Science and Technology, Vol. 28, No. 3, 1998, pp. 219-251. doi:10.1080/10643389891254214

[20]   T. Mohammadi, A. Moheb, M. Sadrzadeh and A. Razmi, “Modeling of Metal Ion Removal from Wastewater by Electrodialysis,” Separation and Purification Technology, Vol. 41, No. 1, 2005, pp. 73-82. doi:10.1016/j.seppur.2004.04.007

[21]   V. K. Gupta, I. Ali and Somasundaran, “Adsorbents for Water Treatment: Development of Low Cost Alternatives to Carbon for the Updated,” Encyclopedia of Surface and Colloid science, Marcel Dekker, New York, 2003.

[22]   V. K. Gupta, K. T. Park, S. Sharma and D. Mohan, “Removal of Chromium (VI) from Electroplating Industry Wastewater Using Bagasse Flyash—A Sugar Industry Waste Material,” Environmentalist, Vol. 19, No. 2, 1999, pp. 129-136. doi:10.1023/A:1006693017711

[23]   V. K. Gupta, S. K. Srivastava and D. Mohan, “Design Parameters for Fixed Bed Reactors of Activated Carbon Developed from Fertilizer Waste for The Removal of Some Heavy Metal Ions,” Waste Management, Vol. 17, No. 8, 1997, pp. 517-522. doi:10.1016/S0956-053X(97)10062-9

[24]   S. Babel and T. A. Kurniawan, “Low Cost Adsorbents for Heavy Metals Uptake from Contaminated Water: A Review,” Journal of Hazardous Materials, Vol. B97, No. 1-3, 2003, pp. 219-243. doi:10.1016/S0304-3894(02)00263-7

[25]   C. Quintelas, B. Fonseca, B. Silva, H. Figueiredo and T. Tavares, “Treatment of Chromium (VI) Solutions in a Pilot-Scale Bioreactor through a Biofilm of ArthrobacterViscosus Supported on GAC,” Bioresource Technology, Vol. 100, No. 1, 2009, pp. 220-226. doi:10.1016/j.biortech.2008.05.010

[26]   G. Wisniewska and T. Winnicki, “Acidic Wastewater Treatment by Donnan Dialysis Involving Tubular Anion Exchange Membranes,” Desalination, Vol. 68, No. 2-3, 1998, pp. 121-130. doi:10.1016/0011-9164(88)80049-3

[27]   K. Pyrzynska, “Atomic Absorption Spectrophotometric Determination of Gold with Preconcentrationby Donnan Dialysis,” Talanta, Vol. 41, No. 3, 1994, pp. 381-386. doi:10.1016/0039-9140(94)80142-8

[28]   J. E. DiNunzio and M. Jubara, “Donnan Dialysis Preconcentration for Ion Chromatography,” Analytical Chemistry, Vol. 55, No. 7, 1983, pp. 1013-1016. doi:10.1021/ac00258a008

[29]   A. Dieye, C. Larchet, B. Auclair and C. Mar-Diop, “Elimination des Fluorures par la Dialyse Ionique Croisée,” European Polymer Journal, Vol. 34, No. 1, 1998, pp. 67-75. doi:10.1016/S0014-3057(97)00079-7

[30]   M. Hichour, F. Persin, J. Molenat, J. Sandeaux and C. Gavach, “Fluoride Removal from Diluted Solutions by Donnan Dialysis with Anion Exchange Membranes,” Desalination, Vol. 122, No. 1, 1999, pp. 53-62.

[31]   M. Hichour, F. Persin, J. Sandeaux and C. Gavach, “Fluoride Removal from Waters by Donnan Dialysis,” Separation and Purification Technology, Vol. 18, No. 1, 2000, pp. 1-11. doi:10.1016/S1383-5866(99)00042-8

[32]   J. Seneviratne, S. D. Holmstrom and J. A. Cox, “Donnan Dialysis Preconcentration Coupled with Ion Chromatography and Electrocatalytic Oxidation for the Determination of Cyanide,” Talanta, Vol. 52, No. 6, 2000, pp. 1025-1031. doi:10.1016/S0039-9140(00)00478-1

[33]   W. S. H. Ho and K. K. Sirkdar, “Dialysis in Membrane,” Handbook, Part IV, Van Nostrand Reinhold, New York, 1992.

[34]   Y. Cengeloglu, A. Tor, E. Kir and M. Ersoz, “Transport of Hexavalent Chromium through Anion Exchange Membranes,” Desalination, Vol. 154, No. 3, 2003, pp. 239- 246. doi:10.1016/S0011-9164(03)80039-5

[35]   J. Luo, C. Wu, T. Xu and Y. Wu, “Diffusion Dialysis- Concept, Principle and Applications,” Journal of Membrane Science, Vol. 366, No. 1-2, 2011, pp. 1-16. doi:10.1016/j.memsci.2010.10.028

[36]   S. T. Hwang and K. Kammermeyer, “Electromembrane Processes Membranes in Separation, Techniques of Chemistry,” Wiley/Interscience, New York, 1975.

[37]   L. Picincu and D. Pletcher, “The Transport of Cu(II) through a Sulfonated Styrene/Divinylbenzene Copolymer Membrane,” Journal of Membrane Science, Vol. 147, No. 2, 1998, pp. 257-263. doi:10.1016/S0376-7388(98)00128-8

[38]   V. Kislik and A. Eyal, “Aqueous Hybrid Liquid Membrane Process for Metal Separation: Part II. Selectivity of Metals Separation from Wet-Process Phosphoric Acid,” Journal of Membrane Science, Vol. 169 No. 14, 2000, pp. 133-146. doi:10.1016/S0376-7388(99)00332-4

[39]   D. E. Akretche and H. Kerdjoudj, “Donnan Dialysis of Copper, Gold and Silver Cyanides with Various Anion Exchange Membranes,” Talanta, Vol. 51, No. 2, 2000, pp. 281-289. doi:10.1016/S0039-9140(99)00261-1

[40]   K. Pyrzynska, “Membrane Method for Preconcentrating and Separating Gold Complexes from Aqueous Solutions Containing Other Platinum Group Metals,” Analytica Chimica Acta, Vol. 255, No. 1, 1991, pp. 169-175. doi:10.1016/0003-2670(91)85103-Y

[41]   Y. Yang and P.N. Pintauro, “Multicomponent Space- Charge Transport Model for Ion-Exchange Membranes,” AIChE Journal, Vol. 46, No. 6, 2000, pp. 1177-1190. doi:10.1002/aic.690460610

[42]   J. E. DiNunzio, R. L. Wilson and F. P. Gatchell, “Preconcentration of some Transition and Rare-Earth Elements by Donnan Dialysis,” Talanta, Vol. 30, No. 1, 1983, pp. 57-59. doi:10.1016/0039-9140(83)80012-5

[43]   French Standard NF X 45-200, “Membranes Polymers échangeuse d’Ions,” AFNOR, 1995.

[44]   L. Dammak, V. Toureuil, C. Larchet and B. Auclair, “Experimental Determination of the Water Flow through Charged Membranes in Bi-Ionic Systems,” New Journal of Chemistry, Vol. 21, No. 12, 1997, pp. 1291-1296.

[45]   I. Marzouk, C. Hannachi, L. Dammak and B. Hamrouni, “Removal of Chromium by Adsorption onto Activated Alumina,” Desalination and Water Treatment, Vol. 26, No. 1-3, 2011, pp. 279-286. doi:10.5004/dwt.2011.1833

[46]   G. A. Lewis, D. Mathieu and R. Phan-Tan-Luu, “Pharmaceutical Experimental Design,” Marcel Dekker, New York, 1998. doi:10.1201/9780203508688

[47]   S. Akhnazarova and V. Katarov, “Experiment Optimisationin Chemistry and Chemical Engineering,” MIR Publishers, Moscow, 1982.

[48]   L. Dammak, C. Larchet and B. Auclair, “Theoretical Study of the Bi-Ionic Potential and Confrontation with Experimental Results,” Journal of Membrane Science, Vol. 155, No. 2, 1999, pp. 193-207. doi:10.1016/S0376-7388(98)00307-X

[49]   J. Antony, “Design of Experiments for Engineers and Scientists,” Butterworth-Heinemann, New York, 2003.