Back
 JEP  Vol.4 No.6 , June 2013
Characterization and Optimization of Amylase Producing Bacteria Isolated from Solid Waste
Abstract: Municipal waste is one of the most hazardous components of developing countries. However, enzymes do provide an eco-friendly solution in this case. Amylase is an important enzyme in food, textile and pharmaceutical industry and can be used for bioconversion of waste. From the municipal solid waste we have isolated an amylase producing bacteria that can grow in the irritant municipal waste and help in their bio conversation. The bacteria were identified as Cronobacter sakazakii Jor52 (C2). The optimized media for maximum amylase production after 24 h of incubation, contains 2% starch, 0.6% peptone, 0.01% CaCl2, 0.05% KCl, 0.05% MgSO4 and 0.05% K2HPO4. The crude enzyme activity and stability study revealed that the amylase is stable within the pH 6 - 8 and temperature 30°C - 40°C and give maximum activity at 37°C at pH-8.
Cite this paper: A. Samanta, D. Mitra, S. Roy, C. Sinha and P. Pal, "Characterization and Optimization of Amylase Producing Bacteria Isolated from Solid Waste," Journal of Environmental Protection, Vol. 4 No. 6, 2013, pp. 647-652. doi: 10.4236/jep.2013.46074.
References

[1]   H. Z. Zaved, M. Mizanur Rahman, M. Mashiar Rahman, A. Rahman, S. M. Y. Arafat and M. Safiur Rahman, “Isolation and Characterization of Effective Bacteria for Solid Waste Degradation for Organic Manure,” KMITL Science and Technology Journal, Vol. 8, No. 2, 2008, pp. 44-55.

[2]   S. Cointreau, “Environmental Management of Urban Solid Wastes in Developing Countries—A Project Guide,” Urban Development, World Bank, Washington DC, 1982.

[3]   S. Arlosoroffs, “WB/UNDP Integrated Resource Recovery Project: Recycling of Wastes in Developing Countries,” In: K. Curi, Ed., Appropriate Waste Management for Developing Countries,” Plemum Press, New York, 1982.

[4]   G. E. Blight and C. M. Mbande, “Some Problems of Waste Management in Developing Countries,” Journal of Solid Waste Technology and Management, Vol. 23, No. 1, 1996, pp. 19-27.

[5]   A. Burhan, U. Nisa, C. Gokhan, C. Omer, A. Ashabil and G. Osman, “Enzymatic Properties of a Novel Thermostable, Thermophilic, Alkaline and Chelator Resistant Amylase from an Alkaliphilic Bacillus sp. Isolate ANT-6,” Process Biochemistry, Vol. 38, No. 10, 2003, pp. 1397-1403. doi:10.1016/S0032-9592(03)00037-2

[6]   P. Ellaiah, K. Adinarayana, M. Sunitha and R. B. Devi, “Isolation of α-Amylase Producing Fungi from Some Soils in India,” Indian Journal of Microbiology, Vol. 43, No. 2, 2003, pp. 135-137.

[7]   H. Vahidi, B. Shafagi and Z. Mirzabeigi, “Culture Medium Optimization of α-Amylase Producing Organism Mocur spp. Using the Variable Size-Simplex Algorithm,” Daru, Vol. 13, No. 1, 2005, pp. 20-22.

[8]   S. Chadha, K. Rubinder and H. S. Saini, “Constitutive Alpha-Amylase Producing Mutant and Recombinant Haploid Strains of Thermophilic Fungus Thermomyces Lanuginosus,” Folia Microbiologica, Vol. 50, No. 2, 2005, pp. 133-140.

[9]   M. B. Ali, M. Mezghani and S. Bejar, “A Thermostable Producing Maltohexaose from a New Isolated Bacillus sp. US100: Study of Activity and Molecular Cloning of the Corresponding Gene,” Enzyme and Microbial Technology, Vol. 24, No. 8-9, 1999, pp. 584-589. doi:10.1016/S0141-0229(98)00165-3

[10]   N. T. Mai, D. T. Giang, N. T. N. Minh and V. T. Thao, “Thermophilic Amylase-Producing Bacteria from Vietnamese Soils,” World Journal of Microbiology and Biotechnology, Vol. 8, No. 5, 1992, pp. 505-508. doi:10.1007/BF01201949

[11]   N. Abbas, “Isolation and Identification of α-Amylase Producing Bacteria from Soil at NWFP (Pakistan),” New Biotechnology, Vol. 25, No. 1, 2009, p. S51. doi:10.1016/j.nbt.2009.06.262

[12]   J. F. Shaw, F. P. Lin, S. C. Chen and H. C. Chen, “Purification and Properties of an Extracellular α-Amylase from Thermus sp.,” Botanical Bulletin of Academia Sinica, Vol. 36, No. 3, 1995, pp. 195-200.

[13]   A. Pandey, P. Nigam, C. R. Soccol, V. T. Soccol D. Singh and R. Mohan, “Advances in Microbial Amylases,” Biotechnology and Applied Biochemistry, Vol. 31, 2000, pp. 135-152. doi:10.1042/BA19990073

[14]   S. Mishra and N. Behera, “Amylase Activity of a Starch Degrading Bacteria Isolated from Soil Receiving Kitchen Wastes,” African Journal of Biotechnology, Vol. 7, No. 18, 2008, pp. 3326-3331.

[15]   H. Collins and P. M. Lyne, “Microbiological Methods,” Butter Worths, Boston, 1976, p. 450.

[16]   S. Thippeswamy, K. Girigowda and V. H. Mulimani, “Isolation and Identification of Alpha-Amylase Producing Bacillus sp. from Dhal Industry Waste,” Indian Journal of Biochemistry & Biophysics, Vol. 43, No. 5, 2006, pp. 295-298.

[17]   D. Jamieson, K. M. Pruitt and R. C. Caldwell, “An Improved Amylase Assay,” Journal of Dental Research, Vol. 48, No. 3, 1969, p. 483. doi:10.1177/00220345690480032701

[18]   N. Riaz, I. Haq and M. A. Qadeer, “Characterization of α-Amylase by Bacillus subtilis,” International Journal of Agriculture and Biology, Vol. 5, No. 3, 2003, pp. 249-252.

[19]   P. V. D. Aiyer, “Effect of C: N Ratio on Alpha Amylase Production by Bacillus licheniformis SPT 27,” African Journal of Biotechnology, Vol. 3, No. 10, 2004, pp. 519-522.

[20]   A. O. Ajayi and O. E. Fagade, “Utilization of Corn Starch as Substrate for β-Amylase by Bacillus sp.,” African Journal of Biomedical Research, Vol. 6, No. 1, 2003, pp. 37-42.

[21]   H. Sugita, J. Kawasaki and Y. Deguchi, “Production of Amylase by the Intestinal Microflora in Cultured Freshwater Fish,” Letters in Applied Microbiology, Vol. 24, No. 2, 1997, pp. 105-108. doi:10.1046/j.1472-765X.1997.00360.x

[22]   S. Aiba, K. Kitai and T. Imanaka, “Cloning and Expression of Thermostable α-Amylase Gene from Bacillus stearothermophilus in Bacillus stearothermophilus and Bacillus subtilis,” Applied and Environmental Microbiology, Vol. 46, No. 5, 1983, pp. 1059-1065.

[23]   R. Gupta, P. Gigras, H. Mohapatra, V. K. Goswami and B. Chauhan, “Microbial α-Amylases: A Biotechnological Prospective,” Process Biochemistry, Vol. 38, No. 11, 2003, pp. 1599-1616. doi:10.1016/S0032-9592(03)00053-0

[24]   A. K. Chandra, S. Medda and A. K. Bhadra, “Production of Extracellular Thermostable α-Amylase by Bacillus lichenifermis,” Journal of Fermentation Technology, Vol. 58, No. 1, 1980, pp. 1-10.

[25]   R. A. K. Srivastava and J. N. Baruah, “Culture Conditions for Production of Thermostable Amylase by Bacillus stearothermophilus,” Applied and Environmental Microbiology, Vol. 52, No. 1, 1986, pp. 179-184.

[26]   S. M. Ryan, G. F. Fitzgerald and D. Van Sinderen, “Screening for and Identification of Starch-, Amylopectin-, and Pullulan-Degrading Activities in Bifidobacterial Strains,” Applied and Environmental Microbiology, Vol. 72, No. 8, 2006, pp. 5289-5296. doi:10.1128/AEM.00257-06

[27]   R. A. K. Srivastava and S. N. Mathur, “Regulation of Amylase Bio-Synthesis in Growing and Non-Growing Cells of Bacillus stearothermophilus,” Journal of Applied Microbiology, Vol. 57, No. 1, 2008, pp. 147-151. doi:10.1111/j.1365-2672.1984.tb02367.x

[28]   J. L. Meers, “The Regulation of α-Amylase Duction in Bacilhs licheniformis,” Antonie van Leeuwenhoek Journal of Microbiology and Seroloyy, Vol. 38, No. 1, 1972, pp. 585-590.

[29]   P. Schaeffer, “Asporogenous Mutants of Bacillus subtilis Marburg,” Folia Microbiologica, Vol. 2, No. 3, 1967, pp. 291-296. doi:10.1007/BF02868746

[30]   J. P. Smits, A. Rinzema, J. Tramper, H. M. Van Sonsbeek and W. Knol, “Solid-State Fermentation of Wheat Bran by Trichoderma Reesei QM9414: Substrate Composition Changes, C Balance, Enzyme Production, Growth and Kinetics,” Applied Microbiology and Biotechnology, Vol. 46, No. 5, 1996, pp. 489-496.

[31]   K. Bose and D. Das, “Thermostable α-Amylase Production Using B. licheniformis NRRL B1438,” Indian Journal of Experimental Biology, Vol. 34, No. 12, 1996, pp. 1279-1282.

[32]   J. F. Parr and S. B. Hornick, “Utilization of Municipal Wastes,” In: F. B. Metting, Ed., Soil Microbial Ecology: Applications in Agricultural and Environmental Management, Marcel Dekker, Inc., New York, 1992, pp. 545-559.

 
 
Top