WJCD  Vol.3 No.3 , June 2013
The orthodox therapy of cardiovascular diseases integrated by ozone-therapy is able to normalize the redox system
ABSTRACT

Cardiovascular diseases such as chronic limb ischemia, cardiomyopathies and stroke represent the first cause of death. Moreover, type-II diabetes, chronic obstructive pulmonary disease and age-related macular degeneration are also progressive pathologies complicated by a chronic inflammation that might be able to maintain progressive chronic oxidative stress. Orthodox medicine has provided excellent drugs which slow down the progression of these diseases but minimally reverse the oxidative stress conditions. Administration of antioxidants is unable to balance the oxidant excess. Today, all the biochemical and molecular mechanisms of ozone therapy have been clarified and it has been demonstrated that ozone therapy can reactivate the fundamental Nrf2 system and be able to restore the innate antioxidant defense mechanisms composed of several highly protective enzymes. This paper proposes to integrate the orthodox treatment with ozone therapy for improving clinical results.


Cite this paper
Bocci, V. , Borrelli, E. , Zanardi, I. and Travagli, V. (2013) The orthodox therapy of cardiovascular diseases integrated by ozone-therapy is able to normalize the redox system. World Journal of Cardiovascular Diseases, 3, 308-311. doi: 10.4236/wjcd.2013.33048.
References
[1]   Munzel, T., Gori, T., Bruno, R.M. and Taddei, S. (2010) Is oxidative stress a therapeutic target in cardiovascular disesase? European Heart Journal, 31, 2741-2749. doi:10.1093/eurheartj/ehq396

[2]   Gori, T. and Munzel, T. (2011) Oxidative stress and endothelial dysfunction: Therapeutic implications. Annals of Medicine, 43, 259-272. doi:10.3109/07853890.2010.543920

[3]   Taddei, S., Nami, R., Bruno, R.M., Quatrini, I. and Nuti, R. (2011) Hypertension, left ventricular hypertrophy and chronic kidney disease. Heart Failure Reviews, 16, 615620. doi:10.1007/s10741-010-9197-z

[4]   Ghiadoni, L., Taddei, S. and Virdis, A. (2012) Hypertension and endothelial dysfunction: Therapeutic approach. Current Vascular Pharmacology, 10, 42-60. doi:10.2174/157016112798829823

[5]   Espinola-Klein, C., Gori, T., Blankenberg, S. and Munzel, T. (2011) Inflammatory markers and cardiovascular risk in the metabolic syndrome. Frontiers in Bioscience: A Journal and Virtual Library, 16, 1663-1774. doi:10.2741/3812

[6]   Virdis, A., Duranti, E. and Taddei, S. (2011) Oxidative stress and vascular damage in hypertension: Role of angiotensin II. International Journal of Hypertension, Article ID: 916310. doi:10.4061/2011/916310

[7]   Haas, B., Schlinkert, P., Mayer, P. and Eckstein, N. (2012) Targeting adipose tissue. Diabetology & Metabolic Syndrome, 4, 43. doi:10.1186/1758-5996-4-43

[8]   Droge, W. (2002) Free radicals in the physiological control of cell function. Physiological Reviews, 82, 47-95.

[9]   Segal, B.H., Grimm, M.J., Khan, A.N.H., Han, W. and Blackwell, T.S. (2012) Regulation of innate immunity by NADPH oxidase. Free Radical Biology and Medicine, 53, 72-80. doi:10.1016/j.freeradbiomed.2012.04.022

[10]   Valko, M., Leibfritz, D., Moncol, J., Cronin, M.T.D., Mazur, M. and Telser, J. (2007) Free radicals and antioxidants in normal physiological functions and human disease. The International Journal of Biochemistry & Cell Biology, 39, 44-84. doi:10.1016/j.biocel.2006.07.001

[11]   Sesso, H.D., Buring, J.E., Christen, W.G., Kurth, T., Belanger, C., MacFadyen, J., Bubes, V., Manson, J.E., Glynn, R.J. and Gaziano, J.M. (2008) Vitamins E and C in the prevention of cardiovascular disease in men: The Physicians’ health study II randomized controlled trial. JAMA, 300, 2123-2133. doi:10.1001/jama.2008.600

[12]   Firuzi, O., Miri, R., Tavakkoli, M. and Saso, L. (2011) Antioxidant therapy: Current status and future prospects. Current Medicinal Chemistry, 18, 3871-3888. doi:10.2174/092986711803414368

[13]   Candelario-Jalil, E., Mohammed-Al-Dalain, S., Fernandez, O.S., Menendez, S., Pérez-Davison, G., Merino, N., Sam, S. and Ajamieh, H.H. (2001) Oxidative preconditioning affords protection against carbon tetrachlorideinduced glycogen depletion and oxidative stress in rats. Journal of Applied Toxicolicology, 21, 297-301. doi:10.1002/jat.758

[14]   Tylicki, L., Nieweglowski, T., Biedunkiewicz, B., Chamienia, A., Debska-Slizien, A., Aleksandrowicz, E., Lysiak-Szydlowska, W. and Rutkowski, B. (2003) The influence of ozonated autohemotherapy on oxidative stress in hemodialyzed patients with atherosclerotic ischemia of lower limbs. International Journal of Artificial Organs, 26, 297-303.

[15]   Di Paolo, N., Bocci, V., Salvo, D.P. and Garosi, G. (2005) Extracorporeal blood oxygenation and ozonation (EBOO): A controlled trial in patients with peripheral artery disease. International Journal of Artificial Organs, 28, 10391050.

[16]   Bocci, V., Zanardi, I. and Travagli, V. (2011) Ozone acting on human blood yields a hormetic dose-response relationship. Journal of Translational Medicine, 9, 66. doi:10.1186/1479-5876-9-66

[17]   Nakao, A., Faleo, G., Nalesnik, M.A., Seda-Neto, J., Kohmoto, J. and Murase, N. (2009) Low-dose carbon monoxide inhibits progressive chronic allograft nephropathy and restores renal allograft function. American Journal of Physiology Renal Physiology, 297, F19-F26. doi:10.1152/ajprenal.90728.2008

[18]   Martelli, A., Testai, L., Breschi, M.C., Blandizzi, C., Virdis, A., Taddei, S. and Calderone, V. (2010) Hydrogen sulphide: Novel opportunity for drug discovery. Medicinal Research Reviews, 32, 1093-1130. doi:10.1002/med.20234

[19]   Bocci, V., Borrelli, E., Travagli, V. and Zanardi, I. (2009) The ozone paradox: Ozone is a strong oxidant as well as a medical drug. Medicinal Research Reviews, 29, 646-682. doi:10.1002/med.20150

[20]   Bocci, V. (2012) How a calculated oxidative stress can yield multiple therapeutic effects. Free Radical Research, 46, 1068-1075. doi:10.3109/10715762.2012.693609

[21]   Motohashi, H. and Yamamoto, M. (2004) Nrf2-Keap1 defines a physiologically important stress response mechanism. Trends in Molecular Medicine, 10, 549-557. doi:10.1016/j.molmed.2004.09.003

[22]   Zhang, D.D. (2006) Mechanistic studies of the Nrf2Keap1 signaling pathway. Drug Metabolism Reviews, 38, 769-789. doi:10.1080/03602530600971974

[23]   Sagai, M. and Bocci, V. (2011) Mechanisms of action involved in ozone therapy: Is healing induced via a mild oxidative stress? Medical Gas Research, 1, 29. doi:10.1186/2045-9912-1-29

[24]   Pecorelli, A., Bocci, V., Acquaviva, A., Belmonte, G., Gardi, C., Virgili, F., Ciccoli, L. and Valacchi, G. (2013) Nrf2 activation is involved in ozonated human serum upregulation of HO-1 in endothelial cells. Toxicology and Applied Pharmacology, 267, 30-40. doi:10.1016/j.taap.2012.12.001

[25]   Taguchi, K., Fujikawa, N., Komatsu, M., Ishii, T., Unno, M., Akaike, T., Motohashi, H. and Yamamoto, M. (2012) Keap1 degradation by autophagy for the maintenance of redox homeostasis. Proceedings of the National Academy of Sciences of USA, 109, 13561-13566. doi:10.1073/pnas.1121572109

[26]   Taguchi, K., Motohashi, H. and Yamamoto, M. (2011) Molecular mechanisms of the Keap1-Nrf2 pathway in stress response and cancer evolution. Genes Cells, 16, 123-140. doi:10.1111/j.1365-2443.2010.01473.x.

[27]   Jacobs, M.T. (1982) Untersuchung uber zwishenfalle und typische komplikationen in der ozon-sauerstofftherapie. OzoNachrichten, 5, 1-5.

[28]   Travagli, V., Zanardi, I., Silvietti, A. and Bocci, V. (2007) A physicochemical investigation on the effects of ozone on blood. International Journal of Biological Macromolecules, 41, 504-511. doi:10.1016/j.ijbiomac.2007.06.010

[29]   Travagli, V., Zanardi, I., Bernini, P., Nepi, S., Tenori, L. and Bocci, V. (2010) Effects of ozone blood treatment on the metabolite profile of human blood. International Journal of Toxicology, 29, 165-174. doi:10.1177/1091581809360069

[30]   Bocci, V., Zanardi, I. and Travagli V. (2011) Ozone: A new therapeutic agent in vascular diseases. American Journal of Cardiovascular Drugs, 11, 1-10. doi:10.2165/11539890-000000000-00000

 
 
Top