NM  Vol.4 No.2 , June 2013
Alpha Rhythms Response to 10 Hz Flicker Is Wavelength Dependent
ABSTRACT

Since Adrian and Metthew [1], light may be considered the dominant stimulus for the brain. This statement is confirmed after the discovery of the suprachiasmatic nucleus (SCN) that regulates the master biological clock [2]. In 1998 the discovery of photopigment melanopsin in the ganglion cells of the retina, give new insight in the importance of the light in the pathophysiology of the brain [3]. We have studied the effect of flashing at 10 Hz with LED light of different wavelength on the response of the alpha system. We have shown that this response, consistent with the drive of the frequency and the augmentation of the voltage of the alpha rhythms, is far more significant with the RED-LED than GREEN-LED or BLUE-LED or WHITE-LED (three-chrome) light flashing. We stem the hypothesis that the amplitude increase and phase reset of the alpha waves produced by RED-LED flashing at 10 Hz may be due either to photobiomodulation on the cytochromo c oxidase [4,5] and/or of the photopigment melanopsin, at the level of the retinal ganglion cells, that reinforce the incoming cone-LHC signal and therefore the projection to the SCN [6] or to reinforcement of postsynaptic short term responsiveness, in retinal cone-LHC synapse, due to repetitive stimulation [7,8] or both. We may speculate that the increase of amplitude and phase reset of alpha rhythms, due to flashing at 10 Hz, is primarily modulated in the retina.


Cite this paper
F. Milone, A. Minelli and R. Cian, "Alpha Rhythms Response to 10 Hz Flicker Is Wavelength Dependent," Neuroscience and Medicine, Vol. 4 No. 2, 2013, pp. 94-100. doi: 10.4236/nm.2013.42015.
References
[1]   E. D. Adrian and B. H. C. Matthews, “The Berger Rhythm, Potential Changes from the Occipital Lobes in Man,” Brain, Vol. 57, No. 2, 1934, pp. 355-385.

[2]   M. S. Reppert and D. B. Weaver, “Coordination of Circadian Timing in Mammals,” Nature, Vol. 418, 2002, pp. 935-941. doi:10.1038/nature00965

[3]   J. Provencio, G. Jiang, W. J. De Grip, W. P. Hayes and M. D. Rollag, “Melanopsin: An Opsin in Melanophores,” The Proceedings of the National Academy of Sciences, Vol. 95, No. 1, 1998, pp. 340-345. doi:10.1073/pnas.95.1.340

[4]   T. I. Karu and S. F. Kolyakov, “Exact Action Spectra for Cellular Responses Relevant to Phototherapy,” Photomedicine and Laser Surgery, Vol. 23, No. 4, 2005, pp. 355-361. doi:10.1089/pho.2005.23.355

[5]   T. I. Karu, “Mitochondrial Signaling in Mammalian Cells Activated by Red and Near-IR Radiation,” Photochemistry and Photobiology, Vol. 84, No. 5, 2008, pp. 1091-1099.

[6]   J. Hannibal, P. Hindersson, S. M. Knudsen, B. Georg and J. Fahrenkrug, “The Photo-Pigment Melanopsin Is Exclusively Present in Pituitary Adenilate Cyclase-Activating Polypeptide-Containing Retinal Ganglion Cells of the Retinohypothalamic Tract,” The Journal of Neuroscience, Vol. 22, No. 1, 2002, pp. 191-198.

[7]   J-F. Hu, Y. Liu and P. J. Liang, “Stimulus Pattern Related Plasticity of Synapses between Cones and Horizontal Cells in Carp Retina,” Brain Research, Vol. 857, No. 1-2, 2000, pp. 321-326. doi:10.1016/S0006-8993(99)02472-5

[8]   X. Jin, J-F. Hu and P-J. Liang, “Possible Mechanism of Flicking-Induced Short-Term Plasticity in Retinal Cone-LHC Synapse: A Computational Study,” Biological Cybernetics, Vol. 90, No. 5, 2004, pp. 360-367. doi:10.1007/s00422-004-0478-2

[9]   W. G. Walter, V. J. Dovey and H. Shipton, “Analysis of the Electrical Response of the Human Ortex to Photic Stimulation,” Nature, Vol. 158, 1946, pp. 540-543. doi:10.1038/158540a0

[10]   W. Klimesch, “EEG-Alpha Rhythms and Memory Processes,” International Journal of Psychophysiology, Vol. 26, No. 1-3, 1997, pp. 319-340. doi:10.1016/S0167-8760(97)00773-3

[11]   J. R. Williams, “Frequency Specific Effects of Flicker on Recognition Memory,” Neuroscience, Vol. 104, No. 2, 2001, pp. 283-286. doi:10.1016/S0306-4522(00)00579-0

[12]   F. Ferro Milone, T. A. Minelli and L. Turicchia, “Neuron Synchronization and Human EEG Phenomenology Simulation,” Nonlinear Dynamics Psychology and Life Science, Vol. 2, No. 1, 1998, pp. 212-33.

[13]   F. Ferro Milone, T. A. Minelli, A. Porro, F. Binda, “Ritmo Alfa (EEG) e Memoria Comportamentale (Test di Rivermead): Studio di una Possibile Interdipendenza in Soggetti Normali e con Deficit Cognitivo Lieve,” Psicogeriatria, Vol. 4, No. 2, 2009, pp. 59-65.

[14]   F. F. Milone, F. A. Pozzato, G. Bortolan, E. Meneghesso, G. Moresco, G. P. Favaro, M. Sarto, G. Salemi, R. Z anini and G. Manente, “A New Device for Repeated EEG Records with Reduced Leads and Light Stimulator Assembled in a Casque (Technical Note),” International Conference on Bioinformatics and Biochemical Engineering (iCBE2012), Shanghai, 2011, No. 72171.

[15]   F. F. Milone, T. A. Minelli and F. Binda, “Alpha Rhythms and Memory Processes: An Intriguing Question,” Chaos and Complexity Letters, Vol. 4, No. 3, 2008, pp. 1-3.

[16]   H. Z. Shouval, M. F. Bear and L. N. Cooper, “A Unified Theory of NMDA Receptor Dependent Bidirectional Synaptic Plasticity,” The Proceedings of the National Academy of Sciences, Vol. 99, No. 16, 2002, pp. 10831-10836. doi:10.1073/pnas.152343099

[17]   T. J. Karu, “Mitochondrial Mechanisms of Photobiomodulation in Context of New Data about Multiple Roles of ATP,” Photomedicine and Laser Surgery, Vol. 28, No. 6, 2010, pp. 159-160. doi:10.1089/pho.2010.2789

[18]   D. M. Berson, “Strange Vision, Ganglion Cells as Circadian Photoreceptors,” Trends in Neurosciences, Vol. 26, No. 6, 2003, pp. 314-320. doi:10.1016/S0166-2236(03)00130-9

[19]   J. T. Eells, M. M. Henry, P. Summerfelt, M. T. T. Wong-Riley, E. V. Buchmann, M. Kane, N. T. Whelan and H. T. Whelan, “Therapeutic Photobiomodulation for Methanol-Induced Retinal Toxicity,” PNAS, Vol. 100, No. 6, 2003, pp. 3439-3444. doi:10.1073/pnas.0534746100

[20]   P. Pizzo, M. Brini, S. Leo, C. Fotino, P. Pinton and R. Rizzuto, “Mitochondria, Calcium and Cell Death: A Deadly Triad in Neurodegeneration,” Biochimica et Biophysica Acta (BBA)—Bioenergetics, Vol. 1787, No. 5, 2009, pp. 335-344. doi:10.1016/j.bbabio.2009.02.021

[21]   K. D. Desmet, B. S. Desmet, D. A. Paz, J. J. Corry, J. T. Eelles, M. T. T. Wong-Riley, M. M. Henry and H. T. Whelan, “Clinical and Experimental Application of NIR-LED Photobiomodulation,” Photomedicine and Laser Surgery, Vol. 24, No. 2, 2006, pp. 121-128. doi:10.1089/pho.2006.24.121

[22]   A. Amat, J. Rigau, R. W. Waynant, I. K. Ilev and J. J. Anders, “The Electric Field Induced by Light Can Explain Cellular Responses to Electromagnetic Energy: A Hypothesis of Mechanism,” Journal of Photochemistry and Photobiology B: Biology, Vol. 82, No. 2, 2006, pp. 152-160. doi:10.1016/j.jphotobiol.2005.10.001

[23]   F. Fell and N. Azmacher, “The Role of Phase Synchronization in Memory Processes,” Nature Reviews, Neuroscience, Vol. 12, No. 2, 2011, pp. 105-114.

[24]   S. J. Aton and E. D. Herzog, “Come Together Right Now: Synchronization of Rhythms in a Mammalian Circadian Clock,” Neuron, Vol. 48, No. 5, 2006, pp. 631-634.

[25]   S. Benedicenti, I. M. Pepe, F. Angero and A. Benedicenti, “Intracellular ATP Level Increases in Lynphocyte Irradiated with Infrared Laser Light of Wavelength 904 nm,” Photomedicine and Laser Surgery, Vol. 26, No. 5, 2008, pp. 451-453. doi:10.1089/pho.2007.2218

[26]   J. P. Card, W. Larry and R. Y. Moore, “An Overview of the Regulatory System,” In: M. J. Ziegmond, F. E. Bloom, S. C. Landis, J. L. Roberts and L. R. Squire, Eds., Fundamental Neuroscience, Academic Press, San Diego, 1999, pp. 1013-1187.

[27]   R. T. Moore, “Circadian Timing,” In: M. J. Ziegmond, F. E. Bloom, S. C. Landis, J. L. Roberts and L. R. Squire, Eds., Fundamental Neuroscience, Academic Press, San Diego, 1999, pp. 1189-1206.

[28]   K. A. Roecklein, K. J. Rohan, W. C. Duncan, M. D. Rollag, N. E. Rosenthal, R. H. Lipsky and J. Provencio, “A Missense Variant (PIDL) of the Melanopsin (OPN$) Gene in Seasonal Affective Disorder,” Journal of Affective Disorders, Vol. 114, No. 1, 2009, pp. 279-285. doi:10.1016/j.jad.2008.08.005

 
 
Top