[1] Ibrahim, A.S.S. and Al-Salamah, A.A. (2009) Optimization of media and cultivation conditions for alkaline pro tease production by alkaliphilic Bacillus halodurans. Research Journal of Microbiology, 4, 251-259. doi:10.3923/jm.2009.251.259
[2] Gupta, R., Beg, Q. and Lorenz, P. (2002) Bacterial alka-line proteases: Molecular approaches and industrial applications. Applied Microbiology and Biotechnology, 59, 15-32. doi:10.1007/s00253-002-0975-y
[3] Navaneeth, S., et al. (2009) Optimization of medium for the production of subtilisin from Bacillus subtilis MTCC 441. African Journal of Biotechnology, 8, 6327-6331.
[4] Shafee, N., et al. (2005) Optimization of environmental and nutritional conditions for the production of alkaline protease by a newly isolated bacterium Bacillus cereus strain 146. Journal of Applied Sciences Research, 1, 1-8.
[5] Huang, G.R., et al. (2008) Optimization of medium com position for thermostable protease production by Bacillus sp. HS08 with a statistical method. African Journal of Biotechnology, 7, 1115-1122.
[6] Queiroga, A.C., Pintado, M.E. and Malcata, F.X. (2012) Potential use of wool-associated Bacillus species for bio degradation of keratinous materials. International Biodeterioration and Biodegradation, 70, 60-65. doi:10.1016/j.ibiod.2011.12.013
[7] Joo, H.-S. and Chang, C.-S. (2005) Production of protease from a new alkalophilic Bacillus sp. I-312 grown on soybean meal: Optimization and some properties. Process Biochemistry, 40, 1263-1270. doi:10.1016/j.procbio.2004.05.010
[8] Reddy, L.V.A., et al. (2008) Optimization of alkaline pro tease production by batch culture of Bacillus sp. RKY3 through Plackett-Burman and response surface methodological approaches. Bioresource Technology, 99, 2242-2249. doi:10.1016/j.biortech.2007.05.006
[9] Rao, Y.K., et al. (2007) Medium optimization of carbon and nitrogen sources for the production of spores from Bacillus amyloliquefaciens B128 using response surface methodology. Process Biochemistry, 42, 535-541. doi:10.1016/j.procbio.2006.10.007
[10] Puri, S., Beg, Q.K. and Gupta, R. (2002) Optimization of alkaline protease production from Bacillus sp. by response surface methodology. Current Microbiology, 44, 286-290. doi:10.1007/s00284-001-0006-8
[11] Myers, R.H. and Montgomery, D.C. (2002) Response surface methodology: Process and product optimization using designed experiments. Wiley Series in Probability and Statistics, Wiley Interscience, New York, 824.
[12] Queiroga, A.C., Pintado, M.M. and Malcata, F.X. (2007) Novel microbial-mediated modifications of wool. Enzyme and Microbial Technology, 40, 1491-1495. doi:10.1016/j.enzmictec.2006.10.037
[13] Gu, X.B., et al. (2005) Optimization of medium constituents for a novel lipopeptide production by Bacillus subtilis MO-01 by a response surface method. Process Biochemistry, 40, 3196-3201. doi:10.1016/j.procbio.2005.02.011
[14] Kumar, C.G. and Takagi, H. (1999) Microbial alkaline proteases: From a bioindustrial viewpoint. Biotechnology Advances, 17, 561-594. doi:10.1016/S0734-9750(99)00027-0
[15] Chi, Z., et al. (2007) Optimization of medium and cultivation conditions for alkaline protease production by the marine yeast Aureobasidium pullulans. Bioresource Technology, 98, 534-538. doi:10.1016/j.biortech.2006.02.006
[16] Joo, H.-S. and Chang, C.-S. (2006) Production of an oxidant and SDS-stable alkaline protease from an alkaophilic Bacillus clausii I-52 by submerged fermentation: Feasibility as a laundry detergent additive. Enzyme and Microbial Technology, 38, 176-183. doi:10.1016/j.enzmictec.2005.05.008
[17] Liu, J., et al. (2005) Optimization of nutritional conditions for nattokinase production by Bacillus natto NLSSE using statistical experimental methods. Process Biochemistry, 40, 2757-2762. doi:10.1016/j.procbio.2004.12.025