NS  Vol.5 No.6 A , June 2013
Overexpression of the recombinant xyloglucanase sp-Xeg from Penicillium canescens accelerates growth and rooting of transgenic aspen plants
Abstract: Analysis of the properties of transgenic aspen clones with recombinant gene xyloglucanase sp-Xeg from fungi Penicillium canescens showed the presence of complex modifications both in the wood and the phenotype of plants. Biometric analysis revealed an increase in the height of transgenic plants as compared to control plants. Increasing in the height of the shoot of 24.8%, 25% and 26% was observed for lines PtXIVXeg1a, PtXVXeg1a, PtXVXeg1b, respectively. Also there was an increase in the number of internodes in some transgenic clones. For the first time we showed the change in plants rhizogenesis with the recombinant gene xyloglucanase. In 10 of the 25 lines the rooting efficiency in vitro exceeded the control value. The maximum value of the rhizogenesis was fixed for line PtXVXeg1a (2.5 times higher than the control value). The mass of the root system for 6 of the 25 clones in the greenhouse was higher by 20% than the control value. The pentosan content decrease was also detected in all wood samples of transgenic plants. The obtained data of xyloglucanase activity and pentosan content generally correlated with phenotypic modifications.
Cite this paper: Elena, V. , Yulia, K. , Dmitry, L. , Olga, K. and Konstantin, S. (2013) Overexpression of the recombinant xyloglucanase sp-Xeg from Penicillium canescens accelerates growth and rooting of transgenic aspen plants. Natural Science, 5, 36-43. doi: 10.4236/ns.2013.56A006.

[1]   Bauman, M.J., Eklo, G., Michel, M., Kallas, T.T., Teeri, M., Czjzek, H. and Brumer H. (2007) Structural evidence for the evolution of xyloglucanase activity from xyloglucan endo-transglycosylases. Biological implications for cell wall metabolism. The Plant Cell, 19, 1947-1963. doi:10.1105/tpc.107.

[2]   Takeda, T., Furuta, Y., Awano, T., Mizuno, K., Mitsuishi, Y. and Hayashi, T. (2002) Suppression and acceleration of cell elongation by integration of xyloglucans in pea stem segments. Proceedings of the National Academy of Sciences of the United States of America, 99, 9055-9060. doi:10.1073/pnas.132080299

[3]   Park, Y.W., Baba, K., Furutab, Y., Iidab, I., Sameshimac, K., Araid, M. and Hayashi T. (2004) Enhancement of growth and cellulose accumulation by overexpression of xyloglu canase in poplar. FEBS Letters, 564, 183-187. doi:10.1016/S0014-5793(04)00346-1

[4]   Shani, Z., Dekel, M., Tsabary, G., Goren, R. and Shoseyov, O. (2004) Growth enhancement of transgenic poplar plants by overexpression of Arabidopsis thaliana endo-1,4-β-glucanase (cel1). Molecular Breeding, 14, 321-330. doi:10.1023/B:MOLB.0000049213.15952.8a

[5]   Shestibratov, K.A. Podrezov, A.S., Salmova, M.A., Kova litskaya, Yu A., Vidyagina, E.O., Loginov, D.S., Koroleva, O.V. and Miroshnikov A.I. (2012) Phenotypic expression of gene expression xyloglucanase from Penicillium canescens in transgenic plants aspen. Russian Journal Plant Physiology, 59, 1-9.

[6]   Hartati, N.S, Rahayuningsih, L., Kaida, R., Sudarmono wati, E. and Hayashi T. (2009) Overexpression xylogluca nase gene insengon (Paraserianthes falcataria) for growth acceleration. Journal of Biotechnology Research in Tropical Region, 2, 1-4.

[7]   Sasidharan, R., Chinnappa, C.C., Staal, M., Elzenga, J., Yokoyama, R., Nishitani, K., Voesenek, L. and Pierik R. (2010) Light quality-mediated petiole elongation in ara bidopsis during shade avoidance involves cell wall modification by xyloglucan endotransglucosylase/eydrolases. Plant Physiology, 154, 978-990. doi:10.1104/pp.110.162057

[8]   Sampedro, J., Pardo, B., Gianzo, C., Guitión, E., Revilla, G. and Zarra, I. (2010) Lack of β-xylosidase activity in Arabidopsis alters xyloglucan composition and results in growth defects. Plant Physiology, 154, 1105-1115. doi:10.1104/pp.110.163212

[9]   Reiter, W.-D., Chapple, C. and Somerville, C.R. (1993) Altered growth and cell walls in a fucose-deficient mutant of arabidopsis. Science, 261, 1032-1035. doi:10.1126/science.261.5124.1032

[10]   Mellerowicz, E., Immerzeel, P. and Hayashi T. (2008) Xyloglucan: The molecular muscle of trees. Annals of Botany, 102, 659-665. doi:10.1093/aob/mcn170

[11]   Taniguchi, T., Konagaya, K., Kurita, M., Takata, N., Ishii, K., Kondo, T., Funahashi, F., Ohta, S., Kaku, T., Baba, K., Kaida, R. and Hayash, T. (2012) Growth and root sucker ability of field-grown transgenic poplars overexpressing xyloglucanase. Journal Wood Sciences, 7, 1-7.

[12]   Revenkova, E.V., Baghyan, I.L., Pozmogova, G.E. and Edges, A.S. (1994) Development of a new vector system based on the strain Agrobacterium tumefaciens A281. Molecular Genetic, Microbiology and Virology, 5, 36.

[13]   Vidyagina, E.O., Kovalitskaya, Yu.A., Salmova, M.A., Loginov, D.S., Koroleva, O.V. and Shestibratov K.A. (2012) Effect of xyloglucanase gene XegA from Penicillium canescens expression on phenotype of transgenic aspen. 7th SPPS PhD Student Conference.

[14]   Murashige, T. and Skoog F. (1962) A revised medium for rapid growth and bioassays with tobacco cultures. Plant Physiology, 15, 473-497. doi:10.1111/j.1399-3054.1962.tb08052.x

[15]   Shestibratov, K.A., Bulatova, I.V., Shadrina, T.E. and Miroshnikov A.I. (2008) Genetic transformation of triploid forms of aspen and birch plus forms. Self-organizing distributed sensor networks. Proceedings of the VIII International Conference of Young Scientists “Forests of Eurasia—The North Caucasus”, Sochi, 151.

[16]   Bradford, M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Bio chemistry, 72, 248-254. doi:10.1016/0003-2697(76)90527-3

[17]   Obolenskaya, A.V., Yelnitskiaya, Z.P. and Leonovich, A.A. (1991) Laboratory work on the chemistry of wood. Ecology, Moscow, 320.

[18]   Jiang, H.J., Pan, J.S. and Men, X.F. (1993) The study of meristem-tip culture of peach (Prunus persica L.). Journal of China Agricultural University, 19, 49-52.

[19]   Zaitsev, G.N. (1984) Mathematical Statistics in experimental botany. Science, Moscow, 236-424.

[20]   Liu, Y.B., Lu, S.M., Zhang, J.F., Liu, S. and Lu, Y.T. (2007) A xyloglucan endotransglucosylase/hydrolase involves in growth of primary root and alters the deposition of cellulose in Arabidopsis. Planta, 6, 1547-1560. doi:10.1007/s00425-007-0591-2

[21]   Catala, С., Rose, J., York, W., Albersheim, P., Darvill, A. and Bennett A. (2001) Characterization of a tomato xyloglucan endotransglycosylase gene that is down-regulated by auxin in etiolated hypocotyls. Plant Physiology, 127, 1180-1192.

[22]   Cosgrove, D.J. (1993) Water uptake by growing cells: An assessment of the controlling roles of wall relaxation, solute uptake and hydraulic conductance. International Journal of Plant Sciences, 154, 10-21. doi:10.1086/297087