Reconnection of Vortex Bundles Lines with Sinusoidally

Show more

References

[1] R. Aarts, “A Numerical Study of Quantized Vortices in He II,” Ph.D. Dissertation, Eindhoven University, Eindhoven, 1993.

[2] S. Z. Alamri, A. J. Youd and C. F. Barenghi, “Reconnection of Superfluid Vortex Bundles,” Physical Review Letters, Vol. 101, 2008, Article ID: 215302.
doi:10.1103/PhysRevLett.101.215302

[3] C. F. Barenghi, R. J. Donnelly and W. F. Vinen, “Quantized Vortex Dynamics and Superuid Turbulence,” Springer, Berlin, 2001. doi:10.1007/3-540-45542-6

[4] R. J. Donnelly, “Quantized Vortices In Helium II,” Cambridge University Press, Cambridge, 1991.

[5] F. Maggioni, S. Z. Alamri, C. Barenghi and R. Ricca, “Kinetic Energy of Vortex Knots and Unknots,” Il Nuovo Cimento C, Vol. 32, 2009, p. 133.

[6] W. F. Vinen and J. J. Niemela, “Erratum: Quantum Turbulence,” Journal of Low Temperature Physics, Vol. 129, No. 5-6, 2002, pp. 213. doi:10.1023/A:1020890811263

[7] A. C. White, C. F. Barenghi and N. P. Proukakis, “Creation and Characterization of Vortex Clusters in Atomic Bose-Einstein Condensates,” Physical Review A, Vol. 86, 2012, Article ID: 013635.
doi:10.1103/PhysRevA.86.013635

[8] C. F. Barenghi, “Turbulent Dissipation near Absolute Zero,” European Journal of Mechanics—B, Vol. 23, No. 3, 2004, pp. 415-425.
doi:10.1016/j.euromechflu.2003.10.011

[9] A. W. Baggaley and C. F. Barenghi, “Condensate Fraction in Neutron Matter,” Physical Review E, Vol. 84, 2011, Article ID: 067301.
doi:10.1103/PhysRevE.84.067301

[10] M. Tsubota, T. Araki and S. K. Nemirowskii, “Dynamics of Vortex Tangle Without Mutual Friction in Superfluid 4He,” Physical Review B, Vol. 62, No. 17, 2000, pp. 11751-11762. doi:10.1103/PhysRevB.62.11751

[11] K. W. Schwarz, “Three-Dimensional Vortex Dynamics in Superfluid 4He: Line-Line and Line-Boundary Interactions,” Physical Review B, Vol. 31, 1985, pp. 5782-5804.
doi:10.1103/PhysRevB.31.5782

[12] K. W. Schwarz, “Three-Dimensional Vortex Dynamics in Superfluid 4He: Homogeneous Superfluid Turbulence,” Physical Review B, Vol. 38, No. 4, 1988, pp. 2398-2417.
doi:10.1103/PhysRevB.38.2398

[13] A. W. Baggaley and C. F. Barenghi, “Tree Method for Quantum Vortex Dynamics,” Journal of Low Temperature Physics, Vol. 166, No. 1-2, 2012, pp. 3-20.
doi:10.1007/s10909-011-0405-6

[14] A. J. Allen, P. M. Chesler and H. Liu, “Holographic Vortex Liquids and Superfluid Turbulence,” arXiv Preprint [hep-th]: arXiv:1212.0281.

[15] A. W. Baggaley and C. F. Barenghi, “Turbulent Cascade of Kelvin Waves on Vortex Filaments,” Journal of Physics: Conference Series, Vol. 318, No. 6, 2011, Article ID: 062001. doi:10.1088/1742-6596/318/6/062001

[16] S. Z. Alamri, “A Numerical Study of Quantum Turbulence,” Ph.D. Dissertation, Newcastle University, Newcastle, 2009.

[17] M. S. Ismail and S. Z. Alamri, “Highly Accurate Finite Difference Method for Coupled Nonlinear Schrdinger Equation,” International Journal of Computer Mathematics, Vol. 81, No. 3, 2004, pp. 333-351.
doi:10.1080/00207160410001661339

[18] F. Maggioni, S. Z. Alamri, C. Barenghi and R. Ricca, “Velocity, Energy, and Helicity of Vortex Knots and Unknots,” Physical Review E, Vol. 82, 2010, Article ID: 026309. doi:10.1103/PhysRevE.82.026309

[19] A. W. Baggaley, C. F. Barenghi and Y. A. Sergeev, “Quasiclassical and Ultraquantum Decay of Superfluid Turbulence,” Physical Review B, Vol. 85, 2012, Article ID: 060501(R). doi:10.1103/PhysRevB.85.060501

[20] M. V. Berry and M. R. Dennis, “Reconnections of Wave Vortex Lines,” European Journal of Physics, Vol. 33, No. 3, 2012, pp. 723-731. doi:10.1088/0143-0807/33/3/723

[21] D. Holm and R. Kerr, “Transient Vortex Events in the Initial Value Problem for Turbulence,” Physical Review Letters, Vol. 88, No. 24, 2002, Article ID: 244501.
doi:10.1103/PhysRevLett.88.244501

[22] R. Kerr, “Cover Illustration: Vortex Structure of Euler Collapse,” Nonlinearity, Vol. 9, 1996, pp. 271-272.
doi:10.1088/0951-7715/9/2/001

[23] J. Koplik and H. Levine, “Vortex Reconnection in Superfluid Helium,” Physical Review Letters, Vol. 71, No. 9, 1993, pp. 1375-1378. doi:10.1103/PhysRevLett.71.1375