AHS  Vol.2 No.2 , June 2013
The Roots of the Theoretical Models of the Nanotechnoscience in the Electric Circuit Theory
Author(s) Vitaly Gorokhov*
ABSTRACT
In the contemporary nanotechnoscience makes natural-scientific experimentation constitutive for design, while research results are oriented equally on interpreting and predicting the course of natural processes, and on designing devices. Nanoystems can be seen as nanoelectrical switches in a nanocircuit. In nanocircuit structure, we find traditional electronic components at different levels, realized on the basis of nanotechnology. In nanotechnoscience explanatory models of natural phenomena are proposed, and predictions of the course of certain natural events on the basis of mathematics and experimental data are formulated, on the one hand, as in classical natural science; as in the engineering sciences, on the other hand, not only experimental setups, but also structural plans for new nanosystems previously unknown in nature and technology are devised. In nanotechnoscience different models (equivalent circuits with standard electronic components) of electric circuit theory are used for the analysis and synthesis of nanocircuits, and a special nanocircuit theory is elaborated. So nanotechnology is, at the same time, a field of scientific knowledge and a sphere of engineering activity—in other words, NanoTechnoScience, similar to Systems Engineering as the analysis and design of complex micro- and nanosystems.

Cite this paper
Gorokhov, V. (2013). The Roots of the Theoretical Models of the Nanotechnoscience in the Electric Circuit Theory. Advances in Historical Studies, 2, 19-31. doi: 10.4236/ahs.2013.22006.
References
[1]   Ahmed, H. (1991). Nanostructure fabrication. Proceedings of the IEEE, 79, 8. doi:10.1109/5.92073

[2]   Alù, A., & Engheta, N. (2008). A Hertzian plasmonic nanodimer as an efficient optical nanoantenna. Physical Review B, 78, 19. http://repository.upenn.edu/cgi/viewcontent.cgi?article=1500&context=ese_papers doi:10.1103/PhysRevB.78.195111

[3]   Alù, A., Salandrino, A. & Engheta, N. (2007). Coupling of optical lumped nanocircuit elements and effects. Optics Express, 15, 21. http://repository.upenn.edu/cgi/viewcontent.cgi?article=1477&context=ese_papers doi:10.1364/OE.15.013865

[4]   Alù, A., Youngy, M. E., & Engheta, N. (2008). Design of nanofilters for optical nanocircuits. Physical Review Letters B, 77, 144107. http://repository.upenn.edu/cgi/viewcontent.cgi?article=1436&context=ese_papers

[5]   Arnall, A. H. (2003). Future technologies, today’s choices nanotechnology, artificial intelligence and robotics; a technical, political and institutional map of emerging technologies. A Report for the Greenpeace Environmental Trust, London: Department of Environmental Science and Technology Environmental Policy and Management Group, Faculty of Life Sciences, Imperial College London, University of London. http://www.greenpeace.org.uk/MultimediaFiles/Live/FullReport/5886.pdf

[6]   Barrett, D. (2000-2002). Radar theory. http://www.radarpages.co.uk/theory/ap3302/sec1/sec1contents.htm

[7]   Berger, M. (2007). Towards wet computing. Nanowerk L. http://www.nanowerk.com/spotlight/spotid=3559.php

[8]   Bernstein, G. H., Chua, L. O., Csurgay, A. I. et al. (2006). Biologically-inspired cellural machine architectures. In W. S. Bainbrige, & M. C. Roco (Eds.), Managing nano-bio-infocogno innovations: Technologies in society. National Science and Technology Council’s Subcommittee on Nanoscale Science, Engineering, and Technology. Dordrecht: Springer.

[9]   Bhushan, B. (Ed.) (2004). Springer handbook of nanotechnology. Berlin, Heidelberg, New York: Springer-Verlag. doi:10.1007/3-540-29838-X

[10]   Burke, P. J., Li, S., & Yu, Z. (2004). Quantitative theory of nanowire and nanotube antenna performance. http://arxiv.org/PS_cache/cond-mat/pdf/0408/0408418v1.pdf

[11]   Cox, D. M. (1999). High surface area materials. In R. W. Siegel, E. Hu, & M. C. Roco (Eds.), Nanostructure science and technology. A worldwide study. R & D status and trends in nanoparticles, nanostructured materials, and nanodevices. Final Report Prepared under the Guidance of the Interagency Working Group on NanoScience, Engineering and Technology (IWGN), National Science and Technology Council (NSTC). Maryland: WTEC, Loyola College. http://www.wtec.org/loyola/nano/final/ch4.pdf

[12]   Engheta, N., Salandrino, A., & Aiu, A. (2004). Circuit elements at optical frequencies: nano-inductors, nano-capacitors and nano-resistors. http://arxiv.org/ftp/cond-mat/papers/0411/0411463.pdf

[13]   Gorokhov, V. (2006). Die karlsruher experimente von heinrich hertz und die rolle ferdinand brauns für die entstehung der radiotechnik als theorie und praxis in Deutschland und in Russland. In Jahrbuch des Deutsch-Russischen kollegs 2004/2005. Aachen: Shaker Verlag GmbH.

[14]   Johnson, R. C. (2005). Nanotubes enable dense supercapacitors. http://www.automotivedesignline.com/showArticle.jhtml?printableArticle=true&articleId=60405658)

[15]   Józsa, C., Tombros, N., Popinciuc, M., Jonkman, H. T., & van Wees, B. J. (2008). Graphene spintronics—Injection and transport. In NIM workshop “interactions in hybrid nanosystems”, Frauenw?rth.

[16]   Leider, P., & Klier, J. (2008). Electron transport in nanostructures on helium films. In Th. Schimmel et al. (Eds.), Nanotechnology—Physics, chemistry, and biology of functional nanostructures: Results of the first research programme Kompetenznetz “Funktionelle Nanostrukturen” (Competence Network on Functional Nanostructures). Stuttgart: Landesstiftung Baden-Württemberg.

[17]   Pool Jr., Ch. P., & Owens, F. J. (2003). Introduction to nanotechnology. Hoboken, NJ: John Wiley & Sons.

[18]   Ray, D. L. (2008). The end of the silicon era? Carbon nanotubes, the next great leap. http://www.nanowerk.com/spotlight/spotid=5706.php

[19]   Reuleaux, F. (1875). Kinematics of machinery outlines of a theory of machines. London: Macmillan and Co.

[20]   Roth, S., & Kern, D. (2008). Self-assambly of carbon nanotube transistors. In Th. Schimmel et al. (Eds.), Nanotechnology—Physics, chemistry, and biology of functional nanostructures: Results of the first research programme Kompetenznetz “Funktionelle Nanostrukturen” (Competence Network on Functional Nanostructures). Stuttgart: Landesstiftung Baden-Württemberg.

[21]   Salandrino, A., Alù, A., & Engheta, N. (2007). Parallel, series, and intermediate interconnections of optical nanocircuit elements part 1: Analytical solution. http://arxiv.org/ftp/arxiv/papers/0707/0707.1002.pdf

[22]   Schiemann, G. (2005). Nanotechnology and nature. On two criteria for understanding their relationship. HYLE—International Journal for Philosophy of Chemistry, 11, 1. http://www.hyle.org

[23]   Schmid, G. et al. (2006). Nanotechnology. Assessment and perspectives. Berlin, Heidelberg: Springer

[24]   Sherrity, S., Wiedericky, H. D., Mukherjeey, B. K., & Sayerz, M. (1997). An accurate equivalent circuit for the unloaded piezoelectric vibrator in the thickness mode. Journal of Physics D: Applied Physics, 30. http://ext1.rmc.ca/academic/physics/ferroelectrics/Scanneddocuments/ferro6.pdf

[25]   Silveirinha, M. G., Alù, A., Li, J., & Engheta, N. (2007). Nanoinsulators and nanoconnectors for optical nanocircuits. http://arxiv.org/ftp/cond-mat/papers/0703/0703600.pdf

[26]   Smalley, E. (2005). Nano bridge builds logic. The Latest Technology Research News. http://www.trnmag.com/Stories/2005/012605/Nano_bridge_builds_logic_012605.html

[27]   Song, L., Zhao, Y., Sun, L., & Xie, S. (2008). Water filled in single-walled carbon nanotubes. NIM Workshop “Interactions in Hybrid Nanosystems”, Frauenw?rth. http://www.nano-initiative-munich.de/fileadmin/media/events/Book_of_Abstracts_28_4_08_final_klein.pdf

[28]   Steele B. (2005). Making the big step from electronics to photonics by modulating a beam of light with electricity. http://www.news.cornell.edu/stories/May05/LipsonElectroOptical.ws.html

[29]   Starzyk, J. A., & Sliwa, E. (1984). Upward topological analysis of large circuits using directed graph representation. IEEE Transactions on Circuits and Systems, CAS-31, 4.

[30]   Wilson, B. (2007). Distributed parameters. http://cnx.org/content/m1043/latest/

[31]   Xie, F.-Q., Obermair, Ch., & Schimmel, Th. (2007). Configuring a bistable atomic switch by repeated electrochemical cycling. V International Conference on Microelectronics and Computer Science. Nanoscale Phenomena—Fundamentals and Applications, “NANO-2007”, Kishinev.

 
 
Top