Iterative approximate solutions of kinetic equations for reversible enzyme reactions

Show more

References

[1] Maheswari, M.U. and Rajendran, L. (2011) Analytical solution of non-linear enzyme reaction equations arising in mathematical chemistry. Journal of Mathematical Chemistry, 49, 1713-1726.
doi:10.1007/s10910-011-9853-0

[2] Schnell, S. and Maini, P.K. (2000) Enzyme kinetics at high enzyme concentration. Bulletin of Mathematical Biology, 62, 483-499. doi:10.1006/bulm.1999.0163

[3] Varadharajan, G. and Rajendran, L. (2011) Analytical solutions of system of non-linear differential equations in the single-enzyme, single-substrate reaction with non mechanism-based enzyme inactivation. Applied Mathematics, 2, 1140-1147. doi:10.4236/am.2011.29158

[4] Varadharajan, G. and Rajendran, L. (2011) Analytical solution of coupled non-linear second order reaction differential equations in enzyme kinetics. Natural Science, 3, 459-465. doi:10.4236/ns.2011.36063

[5] Li, B., Shen, Y. and Li, B. (2008) Quasi-steady state laws in enzyme kinetics. The Journal of Physical Chemistry A, 112, 2311-2321. doi:10.1021/jp077597q

[6] Murray, J.D. (1989) Mathematical biology. Springer, Berlin. doi:10.1007/978-3-662-08539-4_5

[7] Rubinow, S.I. (1975) Introduction to mathematical boilogy. Wiley, New York.

[8] Segel, L.A. (1980) Mathematical models in molecular and cellular biology. Cambridge University Press, Cam bridge.

[9] Hanson, S.M. and Schnell, S. (2008) Reactant stationary approximation in enzyme kinetics. The Journal of Physical Chemistry A, 112, 8654-8658. doi:10.1021/jp8026226

[10] Briggs, G.E. and Haldane, J.B.S. (1925) A note on the kinetics of enzyme action. Biochemical Journal, 19, 338-339.

[11] Gorban, A.N. and Shahzad, M. (2011) The michaelis-menten-stueckelberg theorem. Entropy, 13, 966-1019.

[12] Meena, A., Eswari, A. and Rajendran, L. (2010) Mathematical modeling of enzyme kinetics reaction mechanisms and analytical solutions of non-linear reaction equations. Journal of Mathematical Chemistry, 48, 179186.
doi:10.1007/s10910-009-9659-5

[13] He, J.H. (1999) Homotopy perturbation technique. Computer Methods in Applied Mechanics and Engineering, 178, 257-262. doi:10.1016/S0045-7825(99)00018-3

[14] Dawkins, P. (2007) Differential equations.
http://tutorial.math.lamar.edu/terms.aspx

[15] Gorban, A.N., Radulescu, O. and Zinvyev, A.Y. (2010) Asymptotology of chemical reaction networks. Chemical Engineering Science, 65, 2310-2324.
doi:10.1016/j.ces.2009.09.005

[16] Kargi, F. (2009) Generalized rate equation for single substrate enzyme catalyzed reactions. Biochemical and Biophysical Research Communications, 382, 157-159.

[17] Flach, E.H. and Schnell, S. (2010) Stability of open path ways. Mathematical Biosciences, 228, 147-152.
doi:10.1016/j.mbs.2010.09.002

[18] Pedersen, M.G., Bersani, A.M., Bersani, E. and Cortese, G. (2008) The total quasi steady-state approximation for complex enzyme reactions. Mathematics and Computers in Simulation, 79, 10101019.
doi:10.1016/j.matcom.2008.02.009

[19] Goeke, Ch.S., Walcher, S. and Zerz, E. (2012) Computing quasi-steady state reductions. Journal of Mathematical Chemistry, 50, 14951513.
doi:10.1007/s10910-012-9985-x