ABB  Vol.4 No.6 A , June 2013
Attenuation of nicotine-evoked Ca2+ influx by antibody to the nicotinic acetylcholine receptor α3 subunits in human embryonic kidney cells
Abstract: Autoantibody against neuronal nicotinic acetylcholine receptor (nAChR) α3 subunit is implicated in severe autonomic dysfunction in the patients with autoimmune autonomic ganglionopathy (AAG). Although this autoantibody has been revealed to impair fast excitatory synaptic transmission in autonomic ganglia, its precise mechanism remains unknown. Here, we show that antibody-induced reduction of cell-surface α3 subunits result in impairment of nicotine-evoked Ca2+ influx in stably transfected human embryonic kidney cells. These effects of the antibody were remarkably inhibited by interfering with the endocytic machinery at low-temperature. We conclude that reduction of nAChR in autonomic ganglia can be mediated by the endocytosis of α3 subunits, and resulted in autonomic failure in AAG patients.
Cite this paper: Kobayashi, S. , Yokoyama, S. , Maruta, T. , Muroyama, A. , Yoshikawa, H. and Mitsumoto, Y. (2013) Attenuation of nicotine-evoked Ca2+ influx by antibody to the nicotinic acetylcholine receptor α3 subunits in human embryonic kidney cells. Advances in Bioscience and Biotechnology, 4, 9-14. doi: 10.4236/abb.2013.46A002.

[1]   McKeon, A., Lennon, V.A., Lachance, D.H., Fealey, R.D. and Pittock, S.J. (2009) Ganglionic acetylcholine receptor autoantibody: Oncological, neurological, and serological accompaniments. Archives of Neurology, 66, 735-741. doi:10.1001/archneurol.2009.78

[2]   Vernino, S., Low, P.A., Fealey, R.D., Stewart, J.D., Farrugia, G. and Lennon, V.A. (2000) Autoantibodies to ganglionic acetylcholine receptors in autoimmune autonomic neuropathies. The New England Journal of Medicine, 343, 847-855. doi:10.1056/NEJM200009213431204

[3]   Skok, V.I. (2002) Nicotinic acetylcholine receptors in autonomic ganglia. Autonomic Neuroscience, 97, 1-11. doi:10.1016/S1566-0702(01)00386-1

[4]   Albuquerque, E.X., Pereira, E.F., Alkondon, M. and Rogers, S.W. (2009) Mammalian nicotinic acetylcholine receptors: From structure to function. Physiological Reviews, 89, 73-120. doi:10.1152/physrev.00015.2008

[5]   Lennon, V.A., Ermilov, L.G., Szurszewski, J.H. and Vernino, S. (2003) Immunization with neuronal nicotinic acetylcholine receptor induces neurological autoimmune disease. The Journal of Clinical Investigation, 111, 907913. doi:10.1172/JCI200317429

[6]   Vernino, S., Ermilov, L.G., Sha, L., Szurszewski., J.H., Low, P.A. and Lennon, V.A. (2004) Passive transfer of autoimmune autonomic neuropathy to mice. The Journal of Neuroscience, 24, 7037-7042. doi:10.1523/JNEUROSCI.1485-04.2004

[7]   Vernino, S., Lindstrom, J., Hopkins, S., Wang, Z. and Low, P.A. (2008) Characterization of ganglionic acetylcholine receptor autoantibodies. Journal of Neuroimmunology, 197, 63-69. doi:10.1016/j.jneuroim.2008.03.017

[8]   Kobayashi, S., Yokoyama, S., Maruta, T., Negami, M., Muroyama, A., Mitsumoto, Y., Iwasa, K., Yamada, M. and Yoshikawa, H. (2013) Autoantibody-induced internalization of nicotinic acetylcholine receptor α3 subunit exogenously expressed in human embryonic kidney cells. Journal of Neuroimmunology, 257, 102-106. doi:10.1016/j.jneuroim.2012.12.010

[9]   Wang, Z., Low, P.A., Jordan, J., Freeman, R., Gibbons, C.H., Schroeder, C., Sandroni, P. and Vernino, S. (2007) Autoimmune autonomic ganglionopathy: IgG effects on ganglionic acetylcholine receptor current. Neurology, 68, 1917-1921. doi:10.1212/01.wnl.0000263185.30294.61

[10]   Arancibia-Carcamo, I.L., Fairfax, B.P., Moss, S.J. and Kittler, J.T. (2006) Studying the localization, surface stability and endocytosis of neurotransmitter receptors by antibody labeling and biotinylation approaches. The dynamic synapse: Molecular methods in ionotropic receptor biology, Frontiers in Neuroscience. CRC Press, Boca Raton.