MSA  Vol.1 No.5 , November 2010
PWA Doped SiO2 PEG Hybrid Materials of Class II
Abstract: Sol-gel is a promising technique for the synthesis of organic-inorganic hybrid materials of class II. One of the most interesting applications for these hybrid materials is as solid polymer electrolytes (SPEs). In particular, when doped with proton species they have potential applications in fuel cells. In this paper SiO2–PEG1500 hybrids of class II were prepared with different contents of SiO2 and phosphotungstic acid. The influence of the SiO2 content in the matrix has been studied. The samples were investigated by thermal analysis (TGA and DSC), X-ray diffraction, infrared spectros-copy (IR), scanning electron microscopy (SEM) and Impedance Spectroscopy.
Cite this paper: nullS. Grandi, P. Mustarelli, A. Carollo, C. Tomasi, E. Quartarone and A. Magistris, "PWA Doped SiO2 PEG Hybrid Materials of Class II," Materials Sciences and Applications, Vol. 1 No. 5, 2010, pp. 285-291. doi: 10.4236/msa.2010.15042.

[1]   J. D. Wright and N. A. J. M. Sommerdijk, “Sol-Gel Materials: Chemistry and Applications,” The Netherlands Gordon and Breach Science Publishers, Amsterdam, 2001.

[2]   J. E. Mark, “The Sol-Gel Route to Inorganic—Organic Composites,” Heterogenous Chemical Reviews, Vol. 3, 1996, pp. 307-326.

[3]   I. Honma, S. Hirakawa, K. Yamada and J. M. Bae, Solid State Ionics, Vol. 118, No. 1, 1999, pp. 29-36.

[4]   I. Honma, Y. Takeda and J. M. Bae, Solid State Ionics, Vol. 120, 1999, pp. 255-264.

[5]   I. Honma, S. Nomura and H. Nakajima, Journal of Membrane Science, Vol. 185, 2001, pp. 83.

[6]   H. Y. Chang and C. W. Lin, Journal of Membrane Science, Vol. 218, 2003, pp. 295.

[7]   C. W. Lin, R. Thangamuthu and P. H. Chang, Journal of Membrane Science, Vol. 254, 2005, pp. 197.

[8]   R. Thangamuthu and C. W. Lin, J. of Power Sources, Vol. 150, 2005, pp. 48.

[9]   O. Nakamura, T. Kodama, I. Ogino and Y. Miyake, Chem. Lett., Vol. 1, 1979, pp. 17.

[10]   I. Honma, H. Nakajima and S. Nomura, Solid State Ionics, Vol. 707, 2002, pp. 154.

[11]   H. Nakajima, S. Nomura, T. Sugimoto, S. Nishikawa and I. Honma, Journal of the Electrochemical Society, Vol. 149, No. 8, 2002, pp. A953.

[12]   I. Honma, O. Nishikawa, T. Sugimoto, S. Nomura and H. Nakajima, Fuel Cells, Vol. 2, No. 1, 2002, pp. 52

[13]   I. Honma, H. Nakajima, O. Nishikawa, T. Sugimoto and S. Nomura, Solid State Ionics, Vol. 237, 2003,162.

[14]   U. L. Stangar, N. Groselj, B. Orel and P. Colomban, Chem Mater, Vol. 12, 2000, pp. 3745.

[15]   U. L. Stangar, N. Groselj, B. Orel, A. Schmitz and P. Colomban, Solid State Ionics, Vol. 145, 2001, pp. 109.

[16]   U. L. Stangar, B. Orel, J. Vince, V. Jovanovski, H. Spreizer, A. Surca Vuk and S. Hocevar, J. Solid State Electrochem., Vol. 9, 2005, pp. 106.

[17]   K. Tadanaga, H. Yoshida, A. Matsuda, T. Minami and M. Tatsumisago, Chem. Mater., Vol. 15, 2003, pp. 1910.

[18]   S. J. Huang, H. K. Lee, Y. S. Lee and W. H. Kang, J. Am. Ceram. Soc., Vol. 88, No. 12, 2005, pp. 3427.

[19]   G. Lakshminarayana and M. Nogami, J. Phys. Chem. C, Vol. 113, 2009, pp. 14550.

[20]   G. Lakshminarayana and M. Nogami, Electrochimica Acta, Vol. 54, 2009, pp. 4731.

[21]   R. H. Nagarale, G. S. Gohil, V. K. Shahi and R. Rangarajan, Macromolecules, Vol. 37, 2004, pp. 10023.

[22]   V. V. Binsu, R. K. Nagarale and V. K. Shahi, J. Mater. Chem., Vol. 15, 2005, pp. 4823.

[23]   L. M. Bronstein, C. Joo, R. Karlinsey, A. Ryder and J. W. Zwanziger, Chem. Mater., Vol. 13, 2001, pp. 3678.

[24]   S. Grandi, A. Magistris, P. Mustarelli, E. Quartarone, C. Tomasi and L. Meda, J. Non-Cryst. Solids, Vol. 352, 2006, pp. 273.

[25]   E. Quartarone, P. Mustarelli and A. Magistris, Solid State Ionics, Vol. 110, 1998, pp. 1.