Back
 ARS  Vol.2 No.2 , June 2013
Analysis of a Residual Model for the Decomposition of Polarimetric SAR Data
Abstract: Accurate estimation of the double-bounce scattering fd and surface scattering fs coefficients with Freeman-Durden decomposition is still difficult. This difficulty arises because overestimation of the volume scattering energy contribution Pv leads to negative values for fd and fs. A generalized residual model is introduced to estimate fd and fs. The relationship between Pv and the residual model is analyzed. Eigenvalues computed from the residual model must be positive to explain physical scattering mechanisms. The authors employ a new volumetric scattering model to minimize Pv as calculated by several decomposition methods. It is concluded that decreasing Pv can help reduce negative energy. This conclusion is validated using actual polarimetric SAR data.
Cite this paper: X. Bai, B. He and X. Li, "Analysis of a Residual Model for the Decomposition of Polarimetric SAR Data," Advances in Remote Sensing, Vol. 2 No. 2, 2013, pp. 120-126. doi: 10.4236/ars.2013.22016.
References

[1]   A. Freeman and S. L. Durden, “A Three-Component Scattering Model for Polarimetric SAR Data,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 36, No. 3, 1998, pp. 963-973. doi:10.1109/36.673687

[2]   J. S. Lee, M. R. Grunes, D. L. Schuler, E. Pottier and L. Ferro-Famil, “Scattering Model-Based Speckle Filtering of Polarimetric SAR Data,” IEEE Transactions on Geosciences and Remote Sensing, Vol. 44, No.1, 2006, pp. 176-187. doi:10.1109/TGRS.2005.859338

[3]   J. S. Lee, M. R. Grunes, E. Pottier and L. Ferro-Famil, “Unsupervised Terrain Classification Preserving Polarimetric Scattering Characteristics,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 42, No. 4, 2004, pp. 722-731. doi:10.1109/TGRS.2003.819883

[4]   I. Hajnsek, T. Jagdhuber, H. Schon and K. P. Papathanassiou, “Potential of Estimating Soil Moisture under Vegetation Cover by Means of PolSAR,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 47, No. 2, 2009, pp. 442-454. doi:10.1109/TGRS.2008.2009642

[5]   Y. Yamaguchi, T. Moriyama, M. Ishido and H. Yamada, “Four-Component Scattering Model for Polarimetric SAR Image Decomposition,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 43, No. 8, 2005, pp.1699-1706. doi:10.1109/TGRS.2005.852084

[6]   J. Jakob, J. J. Van Zyl and Y. Kim, “Requirements for Model-Based Polarimetric Decomposition,” Proceedings of IEEE International Geoscience and Remote Sensing Symposium 2008, Vancouver, 24-29 July 2011, pp. 417-420.

[7]   W. An, Y. Cui and J. Yang, “Three-Component ModelBased Decomposition for Polarimetric SAR Data,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 48, No. 6, 2010, pp. 2732-2739. doi:10.1109/TGRS.2010.2041242

[8]   J. S. Lee and T. L. Ainsworth, “The Effect of Orientation Angle Compensation on Coherency Matrix and Polarimetric Target Decompositions,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 49, No. 1, 2011, pp. 53-64. doi:10.1109/TGRS.2010.2048333

[9]   M. Arii, J. J. Van Zyl and Y. Kim, “Adaptive ModelBased Decomposition of Polarimetric SAR Covariance Matrices,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 49, No. 3, 2011, pp. 1104-1113. doi:10.1109/TGRS.2010.2076285

[10]   S. R. Cloude, “Polarisation: Applications in Remote Sensing,” Oxford University, London, 2009, pp. 198-201. doi:10.1093/acprof:oso/9780199569731.001.0001

[11]   J. J. Van Zyl, “Unsupervised Classification of Scattering Behaviors Using Radar Polarimetry Data,” IEEE Transaction on Geoscience and Remote Sensing, Vol. 27, No. 1, 1989, pp. 36-45. doi:10.1109/36.20273

[12]   J. J. Van Zyl, M. Arii and Y. Kim, “Model-Based Decomposition of Polarimetric SAR Covariance Matrices Constrained for Nonnegative Eigenvalues,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 49, No. 9, 2011, pp. 3452-3459. doi:10.1109/TGRS.2011.2128325

 
 
Top