CMB  Vol.3 No.2 , June 2013
BEAR, a Molecular Docking Refinement and Rescoring Method
Abstract: BEAR (Binding Estimation After Refinement) is a computational method for structure-based virtual screening. It was set up as a post-docking processing tool for the refinement of ligand binding modes predicted by molecular docking programs and the accurate evaluation of free energies of binding. BEAR has been validated in a number of computational drug discovery applications. It performed well in discriminating active ligands with respect to molecular decoys of biological targets belonging to different protein families as well as in discovering biologically active hits. Recently, it has also been validated in the emerging field of G-protein coupled receptors structure based virtual screening.
Cite this paper: A. Anighoro and G. Rastelli, "BEAR, a Molecular Docking Refinement and Rescoring Method," Computational Molecular Bioscience, Vol. 3 No. 2, 2013, pp. 27-31. doi: 10.4236/cmb.2013.32004.

[1]   B. C. Duffy, L. Zhu, H. Decornez and D. B. Kitchen, “Early phase Drug Discovery: Cheminformatics and Computational Techniques in Identifying Lead Series,” Bioorganic Medicinal Chemistry, Vol. 20, No. 18, 2012, pp. 5324-5342. doi:10.1016/j.bmc.2012.04.062

[2]   P. Ripphausen, B. Nisius, L. Peltason and J. Bajorath, “Quo Vadis, Virtual Screening? A Comprehensive Survey of Prospective Applications,” Journal of Medicinal Chemistry, Vol. 53, No. 24, 2010, pp. 8461-8467. doi:10.1021/jm101020z

[3]   T. Cheng, Q. Li, Z. Zhou, Y. Wang and S. H. Bryant, “Structure-Based Virtual Screening for Drug Discovery: A Problem-Centric Review,” The AAPS Journal, Vol. 14, No. 1, 2012, pp. 133-141. doi:10.1208/s12248-012-9322-0

[4]   G. Rastelli, “Emerging Topics in Structure-Based Virtual Screening,” Pharmaceutical Research, Vol. 30, No. 5, 2013, pp. 1458-1463. doi:10.1007/s11095-013-1012-9

[5]   D. B. Kitchen, H. Decornez, J. R. Furr and J. Bajorath. “Docking and Scoring in Virtual Screening for Drug Discovery: Methods and Applications,” Nature Reviews. Drug Discovery, Vol. 3, No. 11, 2004, pp. 935-949. doi:10.1038/nrd1549

[6]   G. Schneider, “Virtual Screening: An Endless Staircase?” Nature Reviews. Drug Discovery, Vol. 9, No. 4, 2010, pp. 273-276. doi:10.1038/nrd3139

[7]   G. Rastelli, G. Degliesposti, A. Del Rio and M. Sgobba, “Binding Estimation after Refinement, a New Automated Procedure for the Refinement and Rescoring of Docked Ligands in Virtual Screening,” Chemical Biology & Drug Design, Vol. 73, No. 3, 2009, pp. 283-286. doi:10.1111/j.1747-0285.2009.00780.x

[8]   P. A. Kollman, I. Massova, C. Reyes, B. Kuhn, S. Huo, L. Chong, M. Lee, T. Lee, Y. Duan, W. Wang, O. Donini, P. Cieplak, J. Srinivasan, D. A. Case and T. E. Cheatham, III, “Calculating Structures and Free Energies of Complex Molecules: Combining Molecular Mechanics and Continuum Models,” Accounts of Chemical Research, Vol. 33, No. 12, 2000, pp. 889-897. doi:10.1021/ar000033j

[9]   J. Wang, P. Morin, W. Wang and P. A. Kollman, “Use of MM-PBSA in Reproducing the Binding Free Energies to HIV-1 RT of TIBO Derivatives and Predicting the Binding Mode to HIV-1 RT of Efavirenz by Docking and MM-PBSA,” Journal of the American Chemical Society, Vol. 123, No. 22, 2001, pp. 5221-5230. doi:10.1021/ja003834q

[10]   B. Kuhn, P. Gerber, T. Schulz-Gasch and M. Stahl, “Validation and Use of the MM-PBSA Approach for Drug Discovery,” Journal of Medicinal Chemistry, Vol. 48, No. 12, 2005, pp. 4040-4048. doi:10.1021/jm049081q

[11]   P. D. Lyne, M. L. Lamb and J. C. Saeh, “Accurate Prediction of the Relative Potencies of Members of a Series of Kinase Inhibitors Using Molecular Docking and MM-GBSA scoring,” Journal of Medicinal Chemistry, Vol. 10, No. 49, 2006, pp. 4805-4808. doi:10.1021/jm060522a

[12]   A. Weis, K. Katebzadeh, P. Soderhjelm, I. Nilsson and U. Ryed, “Ligand Affinities Predicted with the MM/PBSA Method: Dependence on the Simulation Method and the Force Field,” Journal of Medicinal Chemistry, Vol. 49, No. 22, 1995, pp. 6596-6606. doi:10.1021/jm0608210

[13]   D. A. Pearlman, D. A. Case, J. W. Caldwell, W. S. Ross, T. E. Cheatham, III, S. DeBolt, D. Ferguson, G. Seibel and P. Kollman, “AMBER, a Package of Computer Programs for Applying Molecular Mechanics, Normal Mode Analysis, Molecular Dynamics and Free Energy Calculations to Simulate the Structural and Energetic Properties of Molecules,” Computer Physics Communications, Vol. 91, No. 1-3, pp. 1-41. doi:10.1016/0010-4655(95)00041-D

[14]   D. A. Case, T. Cheatham, T. Darden, H. Gohlke, R. Luo, K. M. Merz, Jr., A. Onufriev, C. Simmerling, B. Wang and R. Woods, “The Amber Biomolecular Simulation Programs,” Journal of Computational Chemistry, Vol. 26, No. 16, 2005, pp. 1668-1688. doi:10.1002/jcc.20290

[15]   A. M. Ferrari, G. Degliesposti, M. Sgobba and G. Rastelli, “Validation of an Automated Procedure for the Prediction of Relative Free Energies of Binding on a Set of Aldose Reductase Inhibitors,” Bioorganic & Medicinal Chemistry, Vol. 15, No. 24, 2007, pp. 7865-7877. doi:10.1016/j.bmc.2007.08.019

[16]   G. Rastelli, A. Del Rio, G. Degliesposti and M. Sgobba, “Fast and Accurate Predictions of Binding Free Energies Using MM-PBSA and MM-GBSA,” Journal of Computational Chemistry, Vol. 31, No. 4, 2010, pp. 797-810.

[17]   G. Degliesposti, C. Portioli, M. D. Parenti and G. Rastelli, “BEAR, a Novel Virtual Screening Methodology for Drug Discovery,” Journal of Biomolecular Screening, Vol. 16, No. 1, 2011, pp. 129-133. doi:10.1177/1087057110388276

[18]   M. Sgobba, F. Caporuscio, A. Anighoro, C. Portioli and G. Rastelli, “Application of a Post-Docking Procedure Based on MM-PBSA and MM-GBSA on Single and Multiple Protein Conformations,” European Journal of Medicinal Chemistry, Vol. 58, 2012, pp. 431-440. doi:10.1016/j.ejmech.2012.10.024

[19]   A. Anighoro and G. Rastelli, “Enrichment Factor Analyses on G-Protein Coupled Receptors with Known Crystal Structure,” Journal of Chemical Information and Modeling, Vol. 53, No. 4, 2013, pp. 739-743. doi:10.1021/ci4000745

[20]   NCI Diversity Set Information.

[21]   R. Huey, G. M. Morris, A. J. Olson and D. S. Goodsell, “A Semiempirical Free Energy Force Field with Charge- Based Desolvation,” Journal of Computational Chemistry, Vol. 28, No. 6, 2007, pp. 1145-1152. doi:10.1002/jcc.20634

[22]   N. Huang, B. K. Shoichet and J. J. Irwin, “Benchmarking Sets for Molecular Docking,” Journal of Computational Chemistry, Vol. 49, No. 23, pp. 6789-6801.

[23]   J. J. Irwin, T. Sterling, M. M. Mysinger, E. S. Bolstad and R. G. Coleman, “ZINC: A Free Tool to Discover Chemistry for Biology,” Journal of Chemical Information and Modelling, Vol. 52, No. 7, pp. 1757-1768. doi:10.1021/ci3001277

[24]   D. J. Diller and K. M. Merz Jr., “High throughput Docking for library Design and Library Prioritization,” Proteins, Vol. 43, No. 2, 2001, pp. 113-124. doi:10.1002/1097-0134(20010501)43:2<113::AID-PROT1023>3.0.CO;2-T

[25]   R. C. Stevens, V. Cherezov, V. Katritch, R. Abagyan, P. Kuhn, H. Rosen and K. Wüthrich, “The GPCR Network: A Large-Scale Collaboration to Determine Human GPCR Structure and Function,” Nature Reviews. Drug Discovery, Vol. 12, No. 1, 2013, pp. 25-34. doi:10.1038/nrd3859

[26]   X. H. Ma, Z. Shi, C. Tan, Y. Jiang, M. L. Go, B. C. Low, Y. Z. and Chen, “In-Silico Approaches to Multi-Target Drug Discovery,” Pharmaceutical Research, Vol. 27, No. 5, 2010, pp. 739-749. doi:10.1007/s11095-010-0065-2

[27]   G. Degliesposti, V. Kasam, A. Da Costa, H. K. Kang, N. Kim, D. W. Kim, V. Breton, D. Kim and G. Rastelli, “Design and Discovery of Plasmepsin II Inhibitors Using an Automated Workflow on Large-Scale Grids,” Chem- MedChem, Vol. 4, No. 7, 2009, pp. 1164-1173. doi:10.1002/cmdc.200900111

[28]   V. Kasam, M. Zimmermann, A. Maass, H. Schwichtenberg, A. Wolf, N. Jacq, V. Breton and M. Hofmann- Apitius, “Design of New Plasmepsin Inhibitors: A Virtual High throughput Screening Approach on the EGEE Grid,” Journal of Chemical Information and Modelling, Vol. 47, No. 5, 2007, pp. 1818-1828. doi:10.1021/ci600451t

[29]   M. Rarey, B. Kramer, T. Lengauer and G. Klebe, “A Fast Flexible Docking Method Using an Incremental Construction Algorithm,” Journal of Molecular Biology, Vol. 261, No. 3, 1996, pp. 470-489. doi:10.1006/jmbi.1996.0477