Back
 JQIS  Vol.3 No.2 , June 2013
Survival Probability of the Quantum Walk with Phase Parameters on the Two-Dimensional Trapped Lattice
Abstract: We investigate the time dependence of the survival probability of quantum walks governed by Fibonacci walks with phase parameters on the trapped two-dimensional lattice. We have shown that the survival probability of the quantum walk decays with time obey to the stretched exponential law for all initial states of walkers. We have also shown that stretched exponential decay parameter β can be arranged by phase parameter combination. Obtained numerical results show that phase parameters can be used as a control parameter to determine the decay rate of the survival probability of the quantum walk.
Cite this paper: Ampadu, C. , Gönülol, M. and Aydıner, E. (2013) Survival Probability of the Quantum Walk with Phase Parameters on the Two-Dimensional Trapped Lattice. Journal of Quantum Information Science, 3, 51-56. doi: 10.4236/jqis.2013.32010.
References

[1]   E. Agliari, “Trapping of Continuous-Time Quantum Walks on Erdös-Rényi Graphs,” Physica A, Vol. 390, No. 11, 2011, pp. 1853-1860.

[2]   F. Zahringer, G. Kirchmair, R. Gerritsma, E. Solano, R. Blatt and C. F. Roos, “Realization of a Quantum Walk with One and Two Trapped Ions,” Physical Review Letters, Vol. 104, No. 10, 2010, Article ID: 100503.

[3]   H. Schmitz, R. Matjeschk, Ch. Schneider, J. Glueckert, M. Enderlein, T. Huber and T. Schaetz, “Quantum Walk of a Trapped Ion in Phase Space,” Physical Review Letters, Vol. 103, No. 9, 2009, Article ID: 090504.

[4]   P. Xue, B. C. Sanders and D. Leibfried, “Quantum Walk on a Line for a Trapped Ion,” Physical Review Letters, Vol. 103, No. 18, 2009, Article ID: 183602. doi:10.1103/PhysRevLett.103.183602

[5]   E. Agliari, O. Mülken and A. Blumen, “Continuous-Time Quantum Walks and Trapping,” International Journal of Bifurcation and Chaos, Vol. 20, No. 2, 2010, pp. 271279.

[6]   K. Eckert, J. Mompart, G. Birkl and M. Lewenstein, “Oneand Two-Dimensional Quantum Walks in Arrays of Optical Traps,” Physical Review A, Vol. 72, No. 9, 2005, Article ID: 012327.

[7]   A. Wojcik, T. Luczak, P. Kurzynski, A. Grudka, T. Gdala, and M. Bednarska-Bzdega, “Trapping a Particle of a Quantum Walk on the Line,” Physical Review A, Vol. 85, No. 1, 2012, Article ID: 012329.

[8]   E. G. Altmann and A. Endler, “Noise-Enhanced Trapping in Chaotic Scattering,” Physical Review Letters, Vol. 105, No. 24, 2010, Article ID: 244102.

[9]   M. Karski, L. Förster, J. M. Choi, A. Steffen, W. Alt, D. Meschede and A. Widera, “Quantum Walk in Position Space with Single Optically Trapped Atoms,” Science, Vol. 325, No. 5937, 2009, pp. 174-177.

[10]   X. Xu, “Coherent Exciton Transport and Trapping on Long-Range Interacting Cycles,” Physical Review E, Vol. 79, No. 1, 2009, Article ID: 011117.

[11]   O. Mülken, A. Blumen, T. Amthor, C. Giese, M. ReetzLamour and M. Weidemueller, “Survival Probabilities in Coherent Exciton Transfer with Trapping,” Physical Review Letters, Vol. 99, No. 9, 2007, Article ID: 090601.

[12]   M. Gönülol, E. Aydiner, Y. Shikano and O. E. Müstecaplioglu, “Survival Probability in a One-Dimensional Quantum Walk on a Trapped Lattice,” New Journal of Physics, Vol. 13, No. 3, 2011, Article ID: 033037.

[13]   M. Gönülol, E. Aydiner and O. E. Müstecaplioglu, “Decoherence in Two-Dimensional Quantum Random Walks with Traps,” Physical Review A, Vol. 80, No. 2, 2009, Article ID: 022336.

[14]   M. Villagra, M. Nakanishi, S. Yamashita and Y. Nakashima, “Quantum Walks on the Line with Phase Parameters,” IEICE Transactions on Information and Systems, Vol. E95-D, No. 3, 2012, pp. 722-730.

[15]   C. Ampadu, “Limit Theorems for the Fibonacci Quantum Walk,” arXiv:1108.5198, 2011.

[16]   C. Ampadu, “M-Particle Quantum Walks with DeltaInteraction,” arXiv: 1105.6076, 2011.

[17]   C. Ampadu, “Localization of M-Particle Quantum Walks,” arXiv: 1106.5234, 2011.

[18]   S. Havlin, G. H. Weiss, J. E. Kiefer and M. Dishon, “Exact Enumeration of Random Walks with Traps,” Journal of Physics A: Mathematical and General, Vol. 17, No. 6, 1984, p. L347.

[19]   J. C. Phillips, “Stretched Exponential Relaxation in Molecular and Electronic Glasses,” Reports on Progress in Physics, Vol. 59, No. 9, 1996, p. 1133.

 
 
Top