OJMetal  Vol.3 No.2 , June 2013
Predictive Models for the Ultimate Tensile and Yield Stresses Occurring in Joints of Untreated Friction Stir Welded 2017AA (ENAW-AlCu4MgSi) Plates
ABSTRACT
Friction Stir Welding (FSW) processes have been applied in numerous industrial fields and broadly embraced by the research community. In this paper, given three FSW process parameters, namely, the tool rotation speed N (rpm), the tool traverse feed F(mm/min) and the tool pin/shoulder diameters ratio (r%), we purpose to ascertain their impact on joints Ultimate Tensile Stress (UTS) and joints Yield Stress (YS). The FSW has been executed using 6 mm thick rolled plate in 2017AA. For the design of experiments strategy, we conducted a face centered central composite strategy through which 18 trials have been executed. Then, we utilized the RSM technique to formulate the predictive models which are relevant to the (UTS) and (YS) outputs. Accordingly, the study has pointed out the prevalence of the tool rotation speed and the tool diameters ratio factors; however, the tool traverse feed (F) was found trivial and statistically insignificant. Likewise, the sensitivity analysis regarding factors N, F and r% on both (UTS) and (YS) has exhibited the dominance of the tool diameters ratio (r%), indistinctively.

Cite this paper
M. Rezgui, A. Trabelsi, H. Bouzaiene and M. Ayadi, "Predictive Models for the Ultimate Tensile and Yield Stresses Occurring in Joints of Untreated Friction Stir Welded 2017AA (ENAW-AlCu4MgSi) Plates," Open Journal of Metal, Vol. 3 No. 2, 2013, pp. 7-18. doi: 10.4236/ojmetal.2013.32002.
References
[1]   W. M. Thomas, E. D. Nicholas, J. C. Needham, M. G. Murch, S. P. Temple and C. J. Dawes, “Improvements Relating to Friction Welding,” GB Patent No. 9125978. 8, 1991.

[2]   R. Rai, H. K. D. H. Bhadeshia and T. Debroy, “Friction Stir Welding Tools, Science and Technology of Welding and Joining,” Science and Technology of Welding & Joining, Vol. 16, No. 4, 2011, pp. 325-342. doi:10.1179/1362171811Y.0000000023

[3]   T. P. Chen and W. B. Lin, “Optimal FSW Process Parameters for Interface and Welded Zone Toughness of Dissimilar Aluminum-Steel Joint,” Science and Technology of Welding & Joining, Vol. 15, No. 4, 2010, pp. 279-285. doi:10.1179/136217109X12518083193711

[4]   G. H. Payganeh, N. B. Mostafa Arab, Y. Dadgar Asl, F. A. Ghasemi and M. S. Boroujeni, “Effects of Friction Stir Welding Process Parameters on Appearance and Strength of Polypropylene Composite Welds,” International Journal of Physical Sciences, Vol. 6, No. 19, 2011, pp. 4595-4601.

[5]   R. Nandan, T. Debroy and H. K. D. H. Bhadeshia, “Recent Advances in Friction Stir Welding—Process, Weldment Structure and Properties,” Progress in Materials Science, Vol. 53, No. 6, 2008, pp. 980-1023. doi:10.1016/j.pmatsci.2008.05.001

[6]   M. Peel, A. Steuwer, M. Preuss and P. J. Withers, “Microstructure, Mechanical Properties and Residual Stresses as a Function of Welding Speed in Aluminum AA5083 Friction Stir Welds,” Acta Materialia, Vol. 51, No. 16, 2003, pp. 4791-4801.

[7]   K. Elangovan and V. Balasubramanian, “Influences of Tool Pin Profile and Tool Shoulder Diameter on the Formation of Friction Stir Processing Zone in AA6061 Aluminum Alloy,” Materials & Design, Vol. 29, No. 2, 2008, pp. 362-373. doi:10.1016/j.matdes.2007.01.030

[8]   A. Razal, K. Manisekar and V. Balasubramanian, “Influences of Welding Speed on Tensile Properties of Friction Stir Welded AZ61A Magnesium Alloy,” Journal of Materials Engineering and Performance, Vol. 21, No. 2, 2012, pp. 257-265. doi:10.1007/s11665-011-9889-0

[9]   S. Lim, S. Kim, C. Lee and S. Kim, “Tensile Behavior of Friction-Stir-Welded Al6061-T651,” Metallurgical and Materials Transactions A, Vol. 35A, No. 9, 2004, pp. 2829-2835. doi:10.1007/s11661-004-0230-5

[10]   H. Okuyucu, A. Kurt and E. Arcaklioglu, “Artificial Neural Network Application to the Friction Stir Welding of Aluminum Plates,” Materials & Design, Vol. 28, No. 1, 2007, 78-84. doi:10.1016/j.matdes.2005.06.003

[11]   M. Jayaraman, R. Sivasubramanian and V. Balasubramanian, “Establishing Relationship between the Base Metal Properties and Friction Stir Welding Process Parameters of Cast Aluminum Alloys,” Materials & Design, Vol. 31, No. 3, 2010, pp. 4567-4576. doi:10.1016/j.matdes.2010.03.040

[12]   K. Elangovan and V. Balasubramanian, “Influences of Pin Profile and Rotational Speed of the Tool on the Formation of Friction Stir Processing Zone in AA2219 Aluminum Alloy,” Materials Science and Engineering: A, Vol. 459, No. 1-2, 2007, pp. 7-18.

[13]   S. Rajakumar, C. Muralidharan and V. Balasubramanian, “Influence of Friction Stir Welding Process and Tool Parameters on Strength Properties of AA7075-T6 Aluminum Alloy Joints,” Materials & Design, Vol. 32, No. 2, 2011, pp. 535-549. doi:10.1016/j.matdes.2010.08.025

[14]   K. Kumar and S. V. Kailas, “On the Role of Axial Load and the Effect of Interface Position on the Tensile Strength of a Friction Stir Welded Aluminum Alloy,” Materials & Design, Vol. 29, No. 4, 2008, pp. 791-797. doi:10.1016/j.matdes.2007.01.012

[15]   C. Bitondo, U. Prisco, A. Squilace, P. Buonadonna and G. Dionoro, “Friction-Stir Welding of AA 2198 Butt Joints: Mechanical Characterization of the Process and of the Welds through DOE Analysis,” The International Journal of Advanced Manufacturing Technology, Vol. 53, No. 5-8, 2011, pp. 505-516. doi:10.1007/s00170-010-2879-9

[16]   H. K. Mohanty, D. Venkateswarlu, M. Mahapatra and N. R. Kumar, “Modeling the Effects of Tool Probe Geometries and Process Parameters on Friction Stirred Aluminium Welds,” Journal of Mechanical Engineering and Automation, Vol. 2, No. 4, 2012, pp. 74-79. doi:10.5923/j.jmea.20120204.04

[17]   S. Rajakumar, C. Muralidharan and V. Balasubramanian, “Establishing Empirical Relationships to Predict Grain Size and Tensile Strength of Friction Stir Welded AA 6061-T6 Aluminum Alloy Joints,” Transactions of Nonferrous Metals Society of China, Vol. 20, No. 10, 2010, pp. 1863-1872. doi:10.1016/S1003-6326(09)60387-3

[18]   S. Rajakumar and V. Balasubramanian, “Multi-Response Optimization of Friction-Stir-Welded AA1100 Aluminum Alloy Joints,” Journal of Materials Engineering and Performance, Vol. 21, No. 6, 2012, pp. 809-822. doi:10.1007/s11665-011-9979-z

[19]   R. Palanivel, P. K. Mathews and N. Murugan, “Development of Mathematical Model to Predict the Mechanical Properties of Friction Stir Welded AA6351 Aluminum Alloy,” Journal of Engineering Science and Technology Review, Vol. 4, No. 1, 2011, pp. 25-31.

[20]   A. K. Lakshminarayanan and V. Balasubranian, “Process Parameters Optimization for Friction Stir Welding of RDE-40 Aluminum Alloy Using Taguchi Technique,” Transactions of Nonferrous Metals Society of China, Vol. 18, No. 3, 2008, pp. 548-554. doi:10.1016/S1003-6326(08)60096-5

[21]   A. S. Vagh and S. N. Pandya, “Influence of Process Parameters on the Mechanical Properties of Friction Stir Welded AA2014-T6 Alloy Using Taguchi Orthogonal Array,” International Journal of Engineering Sciences & Emerging Technologies, Vol. 2, No. 1, 2012, pp. 51-58.

[22]   K. Brahma Raju, N. Harsha and V. K. Viswanadha Raju, “Prediction of Tensile Strength of Friction Steer Welded Joints Using Artificial Neural Networks,” International Journal of Engineering Research & Technology, Vol. 1, No. 1, 2012, pp. 1-5.

[23]   I. N. Tansel, M. Demetgul, H. Okuyucua and A. Yapici, “Optimizations of Friction Stir Welding of Aluminum Alloy by Using Genetically Optimized Neural Network,” The International Journal of Advanced Manufacturing Technology, Vol. 48, No. 1-4, 2010, pp. 95-101. doi:10.1007/s00170-009-2266-6

[24]   H. J. Liu, H. Fujii, M. Maedaa and K. Nogi, “Tensile Properties and Fracture Locations of Friction-Stir-Welded Joints of 2017-T351 Aluminum Alloy,” Journal of Materials Processing Technology, Vol. 142, No. 3, 2003, pp. 692-699. doi:10.1016/S0924-0136(03)00806-9

[25]   A. Mirjalil, H. J. Aval, S. Serajzadeh and A. H. Kokabi, “Microstructural Evolution and Mechanical Properties of FSWed 2017 AA with Different Initial Microstructures,” Proceedings of the Institution of Mechanical Engineers. Part L: Journal of Materials: Design and Applications, 2013. doi:10.1177/1464420713476400

[26]   A. Trabelsi, M. A. Rezgui and S. Bezzina, “Assessment of the Tensile Elongation (e%) and Hardening Capacity (Hc) of Joints Produced in Friction Stir Welded 2017 AA (Enaw-AlCu4MgSi) Plates,” International Journal of Engineering and Advanced Technology, Vol. 2, No. 4, 2013.

[27]   D. M. Hamby, “A Review of Techniques for Parameter Sensitivity Analysis of Environmental Models,” Environmental Monitoring and Assessment, Vol. 32, No. 2, 1994, pp. 135-154. doi:10.1007/BF00547132

 
 
Top