Back
 OJO  Vol.3 No.2 , June 2013
Comparison of Fusion Rates between Autologous Iliac Bone Graft and Calcium Sulfate with Laminectomy Bone Chips in Multilevel Posterolateral Spine Fusion
Abstract: Multilevel lumbar fusion usually requires a large quantity of iliac crest bone graft but the supply is usually insufficient, so an alternative bone graft substitute for autograft is needed. This prospective study investigated the efficacy of calcium sulfate by comparing the fusion rates between the experimental material (calcium sulfate pellets with bone chips from laminectomy) and autologous iliac bone graft in long segment (three-or four-level) lumbar and lumbosacral posterolateral fusion. Forty-five patients with degenerative scoliosis or spondylolisthesis received multilevel spine fusion and decompression. The experimental material of calcium sulfate pellets with decompression bone chips was placed on the experimental side and the iliac crest bone graft was placed on the control side. The fusion status was assessed radiographically at three-month intervals, and solid fusion was defined as a clear continuous intertransverse bony bridge at all levels. The average follow-up period was 34.4 months. Twenty-nine (64.4%) patients showed solid fusion on the experimental side and 39 (86.7%) patients on the control side. The overall fusion rate was 86.7%. A statistically significant relation was found between the two sides with the Kappa coefficient of agreement of 0.436. Compared to the control side, the fusion rate of experimental side is significantly reduced (p = 0.014). The fusion ability of autograft is higher than the experimental material in multilevel lumbar posterolateral fusion. However, the overall fusion rate of calcium sulfate pellets is improved, compared with previously reported rates, which suggested that such material may be considered as an acceptable bone graft extender.
Cite this paper: M. Lu, T. Tsai, L. Chen, P. Lai, T. Fu, C. Niu and W. Chen, "Comparison of Fusion Rates between Autologous Iliac Bone Graft and Calcium Sulfate with Laminectomy Bone Chips in Multilevel Posterolateral Spine Fusion," Open Journal of Orthopedics, Vol. 3 No. 2, 2013, pp. 119-127. doi: 10.4236/ojo.2013.32023.
References

[1]   C. L. Schnee, A. Freese and L. V. Ansell, “Outcome Analysis for Adults with Spondylolisthesis Treated with Posterolateral Fusion and Transpedicular Screw Fixation,” Journal of Neurosurgery, Vol. 86, No. 1, 1997, pp. 56-63. doi:10.3171/jns.1997.86.1.0056

[2]   T. A. Zdeblick, “A Prospective, Randomized Study of Lumbar Fusion. Preliminary Results,” Spine (Phila Pa 1976), Vol. 18, No. 8, 1993, pp. 983-991. doi:10.1097/00007632-199306150-00006

[3]   C. G. Finkemeier, “Bone-Grafting and Bone-Graft Substitutes,” The Journal of Bone & Joint Surgery, Vol. 84, No. 3, 2002, pp. 454-464. doi: 10.2106/JBJS.K.25334

[4]   J. A. Goulet, L. E. Senunas, G. L. DeSilva and M. L. Greenfield, “Autogenous Iliac Crest Bone Graft. Complications and Functional Assessment,” Clinical Orthopaedics and Related Research, Vol. 339, No. 339, 1997, pp. 76-81. doi:10.1097/00003086-199706000-00011

[5]   E. M. Younger and M. W. Chapman, “Morbidity at Bone Graft Donor Sites,” Journal of Orthopaedic Trauma, Vol. 3, No. 3, 1989, pp. 192-195. doi:10.1097/00005131-198909000-00002

[6]   H. S. An, K. Lynch and J. Toth, “Prospective Comparison of Autograft vs. Allograft for Adult Posterolateral Lumbar Spine Fusion: Differences among Freeze-Dried, Frozen, and Mixed Grafts,” Journal of Spinal Disorders, Vol. 8, No. 2, 1995, pp. 131-135. doi:10.1097/00002517-199504000-00007

[7]   S. S. Jorgenson, T. G. Lowe, J. France and J. Sabin, “A Prospective Analysis of Autograft versus Allograft in Posterolateral Lumbar Fusion in the Same Patient. A Minimum of 1-Year Follow-Up in 144 Patients,” Spine (Phila Pa 1976), Vol. 19, No. 18, 1994, pp. 2048-2053. doi:10.1097/00007632-199409150-00005

[8]   P. J. Nugent and E. G. Dawson, “Intertransverse Process Lumbar Arthrodesis with Allogeneic Fresh-Frozen Bone Graft,” Clinical Orthopaedics and Related Research, Vol. 287, 1993, pp. 107-111. doi:10.1097/00003086-199302000-00017

[9]   C. G. Finkemeier, “Bone-Grafting and Bone-Graft Substitutes,” The Journal of Bone and Joint Surgery. American Volume, Vol. 84, No. 3, 2002, pp. 454-464. doi:10.2106/00004623-200203000-00020

[10]   D. I. Alexander, N. A. Manson and M. J. Mitchell, “Efficacy of Calcium Sulfate plus Decompression Bone in Lumbar and Lumbosacral Spinal Fusion: Preliminary Results in 40 Patients,” Canadian Journal of Surgery, Vol. 44, No. 4, 2001, pp. 262-266. doi:10.1503/cjs.5009328

[11]   C. M. Kelly, R. M. Wilkins, S. Gitelis, C. Hartjen, J. T. Watson and P. T. Kim, “The Use of a Surgical Grade Calcium Sulfate as a Bone Graft Substitute: Results of a Multicenter Trial,” Clinical Orthopaedics and Related Research, Vol. 382, 2001, pp. 42-50. doi:10.1097/00003086-200101000-00008

[12]   F. B. Christensen, M. Laursen, J. Gelineck, S. P. Eiskjaer, K. Thomsen and C. E. Bunger, “Interobserver and Intraobserver Agreement of Radiograph Interpretation with and without Pedicle Screw Implants: The Need for a Detailed Classification System in Posterolateral Spinal Fusion,” Spine (Phila Pa 1976), Vol. 26, No. 5, 2001, pp. 538-543. doi:10.1097/00007632-200103010-00018

[13]   V. K. Sonntag and F. F. Marciano, “Is Fusion Incidated for Lumbar Spinal Disorders?” Spine (Phila Pa 1976), Vol. 20, No. 24, 1995, pp. 138S-142S. doi:10.1097/00007632-199512151-00011

[14]   M. Deguchi. A. J. Rapoff and T. A. Zdeblick, “Posterolateral Fusion for Isthmic Spondylolisthesis in Adults: Analysis of Fusion Rate and Clinical Results,” Journal of Spinal Disorders, Vol. 11, No. 6, 1998, pp. 459-464. doi:10.1097/00002517-199812000-00001

[15]   S. D. Glassman and J. R. Dimar, “Spinal Instrumentation,” In: K. J. Kowall, Ed., Orthopaedic Knowledge Update, 7th Edition, American Academy of Orthopaedic Surgeons, Rosemont, 2002, pp. 703-716. doi:10.1007/s00264-002-0363-3

[16]   K. J. Cho, S. I. Suk, S. R. Park, et al., “Short Fusion versus Long Fusion for Degenerative Lumbar Scoliosis,” European Spine Journal, Vol. 17, No. 5, 2008, pp. 650656. doi:10.1007/s00586-008-0615-z

[17]   M. D. Kornblatt, M. P. Casey and R. R. Jacobs, “Internal Fixation in Lumbosacral Spine Fusion. A Biomechanical and Clinical Study,” Clinical Orthopaedics and Related Research, No. 203, 1986, pp. 141-150. doi:10.1097/00003086-198602000-00017

[18]   J. C. Steinmann and H. N. Herkowitz, “Pseudarthrosis of the Spine,” Clinical Orthopaedics and Related Research, Vol. 284, 1992, pp. 80-90. doi:10.1097/00003086-199211000-00011

[19]   S. Gibson, I. McLeod, D. Wardlaw and S. Urbaniak, “Allograft versus Autograft in Instrumented Posterolateral Lumbar Spinal Fusion: A Randomized Control Trial,” Spine (Phila Pa 1976), Vol. 27, No. 15, 2002, pp. 1599-1603. doi:10.1097/00007632-200208010-00002

[20]   D. S. Mulconrey, K. H. Bridwell, J. Flynn, G. A. Cronen and P. S. Rose, “Bone Morphogenetic Protein (RhBMP-2) as a Substitute for Iliac Crest Bone Graft in Multilevel Adult Spinal Deformity Surgery: Minimum Two-Year Evaluation of Fusion,” Spine (Phila Pa 1976), Vol. 33, No. 20, 2008, pp. 2153-2159. doi:10.1097/BRS.0b013e31817bd91e

[21]   C. E. Taghavi, K. B. Lee, G. Keorochana, S. T. Tzeng, J. H. Yoo and J. C. Wang, “Bone Morphogenetic Protein-2 and Bone Marrow Aspirate with Allograft as Alternatives to Autograft in Instrumented Revision Posterolateral Lumbar Spinal Fusion: A Minimum Two-Year Follow-Up Study,” Spine (Phila Pa 1976), Vol. 35, No. 11, 2010, pp. 1144-1150. doi:10.1097/BRS.0b013e3181bb5203

[22]   Y. Kasai, K. Takegami and A. Uchida, “Mixture Ratios of Local Bone to Artificial Bone in Lumbar Posterolateral Fusion,” Journal of Spinal Disorders & Techniques, Vol. 16, No. 1, 2003, pp. 31-37. doi:10.1097/00024720-200302000-00006

[23]   S. Fujibayashi, J. Shikata, C. Tanaka, M. Matsushita and T. Nakamura, “Lumbar Posterolateral Fusion with Biphasic Calcium Phosphate Ceramic,” Journal of Spinal Disorders, Vol. 14, No. 3, 2001, pp. 214-221. doi:10.1097/00002517-200106000-00005

[24]   N. E. Epstein, “Efficacy of Posterior Cervical Fusions Utilizing an Artificial Bone Graft Expander, Beta Tricalcium Phospate,” Surgical Neurology International, Vol. 2, 2011, p. 15. doi:10.4103/2152-7806.76458

[25]   W. C. Chang, H. K. Tsou, W. S. Chen, C. C. Chen and C. C. Shen, “Preliminary Comparison of Radiolucent Cages Containing Either Autogenous Cancellous Bone or Hydroxyapatite Graft in Multilevel Cervical Fusion,” Journal of Clinical Neuroscience, Vol. 16, No. 6, 2009, pp. 793-796. doi:10.1016/j.jocn.2008.08.034

[26]   W. J. Chen, T. T. Tsai, L. H. Chen, et al., “The Fusion Rate of Calcium Sulfate with Local Autograft Bone Compared with Autologous Iliac Bone Graft for Instrumented Short-Segment Spinal Fusion,” Spine (Phila Pa 1976), Vol. 30, No. 20, 2005, pp. 2293-2297. doi:10.1097/01.brs.0000182087.35335.05

[27]   C. L. Chen, C. L. Liu, S. S. Sun, P. Y. Han, C. S. Lee and W. H. Lo, “Posterolateral Lumbar Spinal Fusion with Autogenous Bone Chips from Laminectomy Extended with OsteoSet,” Journal of the Chinese Medical Association, Vol. 69, No. 12, 2006, pp. 581-584. doi:10.1016/S1726-4901(09)70333-8

[28]   D. Siambanes and S. Mather, “Comparison of Plain Radiographs and CT Scans in Instrumented Posterior Lumbar Interbody Fusion,” Orthopedics, Vol. 21, No. 2, 1998, pp. 165-167. doi:10.3928/9507268

[29]   J. R. Dimar, S. D. Glassman, K. J. Burkus and L. Y. Carreon, “Clinical Outcomes and Fusion Success at 2 Years of Single-Level Instrumented Posterolateral Fusions with Recombinant Human Bone Morphogenetic Protein-2/ Compression Resistant Matrix versus Iliac Crest Bone Graft,” Spine (Phila Pa 1976), Vol. 31, No. 22, 2006, pp. 2534-2539. doi:10.1097/01.brs.0000240715.78657.81

[30]   L. Y. Carreon, S. D. Glassman and M. Djurasovic, “Reliability and Agreement between Fine-Cut CT Scans and Plain Radiography in the Evaluation of Posterolateral Fusions,” The Spinal Journal, Vol. 7, No. 1, 2007, pp. 39-43. doi:10.1016/j.spinee.2006.04.005

 
 
Top