Gravitational Self Energy Mass and Gravitational Radiation Quantization within the Framework of the Generalized General Relativity

Author(s)
M. D. Abdalla,
A. El-Tahir,
M. H. Eisa,
Abdulaziz S. Alaamer,
M. Elnabhani,
K. G. Elgaylani

Affiliation(s)

Physics Department, College of Science, Sudan University of Science & Technology, Khartoum, Sudan.

Physics Department, Faculty of Science, Khartoum University, Khartoum, Sudan.

Physics Department, College of Science, Al Imam Mohammad Ibn Saud Islamic University, Riyadh, KSA.

Science Department, College of Education, Sudan University of Science & Technology, Khartoum, Sudan.

Physics Department, College of Science, Sudan University of Science & Technology, Khartoum, Sudan.

Physics Department, Faculty of Science, Khartoum University, Khartoum, Sudan.

Physics Department, College of Science, Al Imam Mohammad Ibn Saud Islamic University, Riyadh, KSA.

Science Department, College of Education, Sudan University of Science & Technology, Khartoum, Sudan.

ABSTRACT

In this work, the mass resulting from self energy is obtained by utilizing the generalized relativity. The expression for the mass which results from the gravitational field is finite. This expression is found by considering the mass first as small tiny string and second as small sphere. A useful equation for the propagation of graviton waves in space indicates that graviton propagates as travelling wave. By treating gravitation waves as wave packets a plank quantum expression for graviton energy dependent on the frequency is also found. The gravitational constant (parameter) is quantized also in this work.

Cite this paper

M. Abdalla, A. El-Tahir, M. Eisa, A. Alaamer, M. Elnabhani and K. Elgaylani, "Gravitational Self Energy Mass and Gravitational Radiation Quantization within the Framework of the Generalized General Relativity,"*International Journal of Astronomy and Astrophysics*, Vol. 3 No. 2, 2013, pp. 131-136. doi: 10.4236/ijaa.2013.32015.

M. Abdalla, A. El-Tahir, M. Eisa, A. Alaamer, M. Elnabhani and K. Elgaylani, "Gravitational Self Energy Mass and Gravitational Radiation Quantization within the Framework of the Generalized General Relativity,"

References

[1] A. Einstein, “The Foundation of the General Theory of Relativity,” The Principle of Relativity, Dover Publications, Inc., Dover, 1952, pp. 111-164.

[2] R. M. Wald, “General Relativity,” University of Chicago Press, Chicago, 1984. doi:10.7208/chicago/97 80226870373.001.0001

[3] C. W. Misner, K. S. Thorne and J. A. Wheeler, “Gravitation,” W. H. Freeman & Co., San Francisco, 1973.

[4] S. Hawking, “A Brief History of Time,” Time Magazine, 1999.

[5] M. Carmeli, “Classical Fields: General Relativity and Guage Theory,” John Wiley and Sons, New York, 1992.

[6] E. Alvares, “Quantum Gravity: An Introduction to Some Recent Results,” Reviews of Modern Physics, Vol. 61, No. 3, 1989, pp. 561-604. doi:10.1103/RevModPhys.61.561

[7] J. A. Wheeler, “Battelle Rencontres: 1967 Lectures in Mathematics and Physics,” Benjamin, New York, 1968.

[8] J. M. Maldacena, “The Large N Limit of Super Conformal Field Theories and Super Gravity,” International Journal of Theoretical Physics, Vol. 38, No. 4, 1999, pp. 1113-1133. doi:10.1023/A:1026654312961

[9] B. S. DeWitt, “Quantum Theory of Gravity: I. The Canonical Theory,” Physical Review, Vol. 160, No. 5, 1967, pp. 1113-1148. doi:10.1103/PhysRev.160.1113

[10] S. W. Hawking and D. N. Page, “Operator Ordering and the Flatness of the Universe,” Nuclear Physics B, Vol. 264, 1986, pp. 185-196. doi:10.1016/0550-3213(86)90478-5

[11] M. Dirar, “Applications of the Generalized Field Equations to Energy and Cosmological Problems,” Ph.D. Thesis, Khartoum University, Khartoum, 1998.

[12] S. Weinberg, “Gravitation and Cosmology,” John Wiley and Sons, Inc., New York, 1972.

[13] C. Lanczos, “Electricity as a Natural Property of Riemannian Geometry,” Physical Review, Vol. 39, No. 4, 1932, pp. 716-736. doi:10.1103/PhysRev.39.716

[14] Ali El-Tahir, “A Generalized Variational Principle of Gravitation,” Ph.D. Theses, City University, London, 1982.

[15] Ali El-Tahir, “A Generalized Metric of Gravitation,” International Journal of Modern Physics, Vol. 7, No. 13, 1992, p. 3133. doi:10.1142/S0217751X9200140X

[16] M. Dirar, Ali EL-Tahir and M. H. Shaddad, “A Generalized Field Cosmology,” Modern Physics Letters A, Vol. 13, No. 37, 1998, pp. 3025-3031. doi:10.1142/S0217732398003211

[17] M. Dirar, Ali EL-Tahir and M. H. Shaddad, “Short Range Gravitational Field and the Red Shift of Quasars,” International Journal of Theoretical Physics, Vol. 36, No. 6, 1997, pp. 1395-1400. doi:10.1007/BF02435932

[18] M. Y. Shargawi, “Derivation of Quantum Cosmological Model,” Ph.D. Thesis, Sudan University of Science & Technology [SUST], Khartoum, 2012.

[1] A. Einstein, “The Foundation of the General Theory of Relativity,” The Principle of Relativity, Dover Publications, Inc., Dover, 1952, pp. 111-164.

[2] R. M. Wald, “General Relativity,” University of Chicago Press, Chicago, 1984. doi:10.7208/chicago/97 80226870373.001.0001

[3] C. W. Misner, K. S. Thorne and J. A. Wheeler, “Gravitation,” W. H. Freeman & Co., San Francisco, 1973.

[4] S. Hawking, “A Brief History of Time,” Time Magazine, 1999.

[5] M. Carmeli, “Classical Fields: General Relativity and Guage Theory,” John Wiley and Sons, New York, 1992.

[6] E. Alvares, “Quantum Gravity: An Introduction to Some Recent Results,” Reviews of Modern Physics, Vol. 61, No. 3, 1989, pp. 561-604. doi:10.1103/RevModPhys.61.561

[7] J. A. Wheeler, “Battelle Rencontres: 1967 Lectures in Mathematics and Physics,” Benjamin, New York, 1968.

[8] J. M. Maldacena, “The Large N Limit of Super Conformal Field Theories and Super Gravity,” International Journal of Theoretical Physics, Vol. 38, No. 4, 1999, pp. 1113-1133. doi:10.1023/A:1026654312961

[9] B. S. DeWitt, “Quantum Theory of Gravity: I. The Canonical Theory,” Physical Review, Vol. 160, No. 5, 1967, pp. 1113-1148. doi:10.1103/PhysRev.160.1113

[10] S. W. Hawking and D. N. Page, “Operator Ordering and the Flatness of the Universe,” Nuclear Physics B, Vol. 264, 1986, pp. 185-196. doi:10.1016/0550-3213(86)90478-5

[11] M. Dirar, “Applications of the Generalized Field Equations to Energy and Cosmological Problems,” Ph.D. Thesis, Khartoum University, Khartoum, 1998.

[12] S. Weinberg, “Gravitation and Cosmology,” John Wiley and Sons, Inc., New York, 1972.

[13] C. Lanczos, “Electricity as a Natural Property of Riemannian Geometry,” Physical Review, Vol. 39, No. 4, 1932, pp. 716-736. doi:10.1103/PhysRev.39.716

[14] Ali El-Tahir, “A Generalized Variational Principle of Gravitation,” Ph.D. Theses, City University, London, 1982.

[15] Ali El-Tahir, “A Generalized Metric of Gravitation,” International Journal of Modern Physics, Vol. 7, No. 13, 1992, p. 3133. doi:10.1142/S0217751X9200140X

[16] M. Dirar, Ali EL-Tahir and M. H. Shaddad, “A Generalized Field Cosmology,” Modern Physics Letters A, Vol. 13, No. 37, 1998, pp. 3025-3031. doi:10.1142/S0217732398003211

[17] M. Dirar, Ali EL-Tahir and M. H. Shaddad, “Short Range Gravitational Field and the Red Shift of Quasars,” International Journal of Theoretical Physics, Vol. 36, No. 6, 1997, pp. 1395-1400. doi:10.1007/BF02435932

[18] M. Y. Shargawi, “Derivation of Quantum Cosmological Model,” Ph.D. Thesis, Sudan University of Science & Technology [SUST], Khartoum, 2012.