OPJ  Vol.3 No.2 , June 2013
Variation of Trapping Strength with Size and Number of Particles in a Single Trap
Abstract: Optical tweezers use the radiation pressure to trap and manipulate the microscopic particles. Using various algorithms multiple traps are being formed which can trap a number of particles simultaneously. In contrast to multiple traps, many particles can be trapped at a single trap position. It is known that when two or more particles are trapped in a single trap they align themselves in axial direction and it appears as if only one particle is trapped. We present a study of the dependence of the optical trapping force on the number of particles in a single trap using equipartition method; the study was carried out for particles of different sizes. The trapping force was first found to increase then decrease with number of particles in trap for all particle sizes. We feel that our studies will be useful in applications of optical tweezers involving trapping of multiple particles in a single trap.
Cite this paper: J. Bhatt, S. Bhatt, S. Buch, R. Singh and S. Jaaffrey, "Variation of Trapping Strength with Size and Number of Particles in a Single Trap," Optics and Photonics Journal, Vol. 3 No. 2, 2013, pp. 178-183. doi: 10.4236/opj.2013.32029.

[1]   A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm and S. Chu, “Observation of a Single-Beam Gradient Force Optical Trap for Dielectric Particles,” Optics Letters, Vol. 11, No. 5, 1986, pp. 288-290. doi:10.1364/OL.11.000288

[2]   D. G. Grier, “A Revolution in Optical Manipulation,” Nature (London), Vol. 424, No. 6950, 2003, pp. 810-816. doi:10.1038/nature01935

[3]   D. G. Grier and Y. Roichman, “Holographic Optical Trapp ing,” Applied Optics, Vol. 45, No. 5, 2006, pp. 880-887. doi:10.1364/AO.45.000880

[4]   J. E. Molloy, “Optical Chopsticks: Digital Synthesis of Multiple Optical Traps,” Methods in Cell Biology, Vol. 55, 1998, pp. 205-215. doi:10.1016/S0091-679X(08)60410-0

[5]   E. Fallman and O. Axner, “Design for Fully Steerable Dual-Trap Optical Tweezers,” Applied Optics, Vol. 36, No. 10, 1997, pp. 2107-2113. doi:10.1364/AO.36.002107

[6]   E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets and D. G. Grier, “Computer-Generated Holographic Optical Tweezer Arrays,” Review of Scientific Instruments, Vol. 72, No. 3, 2001, pp. 1810-1816. doi:10.1063/1.1344176

[7]   M. Reicherter, T. Haist, E. U. Wagemann and H. J. Ti ziani, “Optical Particle Trapping with Computer-Gene rated Holograms Written on a Liquid-Crystal Display,” Optics Letters, Vol. 24, No. 9, 1999, pp. 608-610. doi:10.1364/OL.24.000608

[8]   M. Hacker, G. Stobrawa and T. Feurer, “Iterative Fourier Transform Algorithm for Phase-Only Pulse Shaping,” Optics Express, Vol. 9, No. 4, 2001, pp. 191-199. doi:10.1364/OE.9.000191

[9]   F. Wyrowski and O. Bryngdahl, “Iterative Fourier-Trans form Algorithm Applied to Computer Holography,” Journal of Optical Society of America A, Vol. 5, No. 7, 1988, pp. 1058-1065.

[10]   S. H. Xu, Y. M. Li and L. Lou, “Axial Optical Trapping Forces on Two Particles Trapped Simultaneously by Optical Tweezers,” Applied Optics, Vol. 44, No. 13, 2005, pp. 2667-2672. doi:10.1364/AO.44.002667

[11]   M. Li and J. Arlt, “Trapping Multiple Particles in Single Optical Tweezers,” Optics Communications, Vol. 281, No. 1, 2008, pp. 135-140. doi:10.1016/j.optcom.2007.09.032

[12]   M. M. Burns, J. M. Fournier and J. A. Golovchenko, “Optical Binding,” Physical Review Letters, Vol. 63, No. 12, 1989, pp. 1233-1236. doi:10.1103/PhysRevLett.63.1233

[13]   R. M. Simmons, J. T. Finer, S. Chu and J. A. Spudich, “Quantitative Measurements of Force and Displacement Using an Optical Trap,” Biophysical Journal, Vol. 70, No. 4, 1996, pp. 1813-1822. doi:10.1016/S0006-3495(96)79746-1

[14]   A. Ashkin, “Forces of a Single-Beam Gradient Laser Trap on a Dielectric Sphere in the Ray Optics Regime,” Bio physical Journal, Vol. 61, No. 2, 1992, pp. 569-582. doi:10.1016/S0006-3495(92)81860-X