Transient Electro-Osmotic and Pressure Driven Flows through a Microannulus

Show more

Flow behavior of transient mixed electro-osmotic and pressure driven flows (EOF/PDF) through a microannulus is investigated based on a linearized Poisson-Boltzmann equation and Navier-Stokes equation. A semi-analytical solution of EOF velocity distribution as functions of relevant parameters is derived by *β*, the normalized pressure gradient Ω* *and the inner to outer radius ratio *α* on transient EOF velocity are presented.

References

[1] H. A. Stone, A. D. Stroock and A. Ajdar, “Engineering Flows in Small Devices: Microfluidics toward a Lab-On-a-Chip,” Annual Review of Fluid Mechanics, Vol. 36, No. 1, 2004, pp. 381-411.
doi:10.1146/annurev.fluid.36.050802.122124

[2] R. J. Hunter, “Zeta Potential in Colloid Science,” Academic Press, San Diego, 1981.

[3] G. Karniadakis, A. Beskok and N. Aluru, “Micorflows and Nanoflows: Fundamentals and Simulation,” Springer, New York, 2005.

[4] D. Burgreen and F. R. Nakache, “Electrokinetic Flow in Ultrafine Capillary Slits,” The Journal of Physical Chemistry, Vol. 68, No. 5, 1964, pp. 1084-1091.

[5] S. Levine, J. R. Marriott, G. Neale and N. Epstein, “Theory of Electrokinetic Flow in Fine Cylindrical Capillaries at High Zeta-Potentials,” The Journal of Physical Chemistry, Vol. 52, No. 1, 1975, pp. 136-149.

[6] H. K. Tsao, “Electroosmotic Flow through an Annulus,” The Journal of Physical Chemistry, Vol. 225, No. 1, 2000, pp. 247-250.

[7] Y. J. Kang, C. Yang and X. Y. Huang, “Electroosmotic Flow in a Capillary Annulus with High Zeta Potentials,” The Journal of Physical Chemistry, Vol. 253, No. 1, 2002, pp. 285-294.

[8] J. P. Hsu, C. Y. Kao, S. J. Tseng and C. J. Chen, “Electrokinetic Flow through an Elliptical Microchannel: Effects of Aspect Ratio and Electrical Boundary Conditions,” The Journal of Physical Chemistry, Vol. 248, No. 1, 2002, pp. 176-184.

[9] C. Yang, D. Li and J. H. Masliyah, “Modeling Forced Liquid Convection in Rectangular Microchannels with Electrokinetic Effects,” International Journal of Heat and Mass Transfer, Vol. 41, No. 24, 1998, pp. 4229-4249.
doi:10.1016/S0017-9310(98)00125-2

[10] S. Arulanandam and D. Li, “Liquid Transport in Rectangular Microchannels by Electroosmotic Pumping,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 161, No. 1, 2000, pp. 89-102.
doi:10.1016/S0927-7757(99)00328-3

[11] F. Bianchi, R. Ferrigno and H. H. Girault, “Finite Element Simulation of an Electroosmotic Driven Flow Division at a t-Junction of Microscale Dimensions,” Analytical Chemistry, Vol. 72, No. 9, 2000, pp. 1987-1993.
doi:10.1021/ac991225z

[12] C. Y. Wang, Y. H. Liu and C. C. Chang, “Analytical Solution of Electroosmotic Flow in a Semicircular Microchannel,” Physical of Fluids, Vol. 20, No. 6, 2008, Article ID: 063105. doi:10.1063/1.2939399

[13] P. Dutta and A. Beskok, “Analytical Solution of Time Periodic Electroosmotic Flows: Analogies to Stokes’s Econd Problem,” Analytical Chemistry, Vol. 73, No. 21, 2001, pp. 5097-5102. doi:10.1021/ac015546y

[14] X. M. Wang, B. Chen and J. K. Wu, “A Semianalytical Solution of Periodical Electro-Osmosis in a Rectangular Microchannel,” Physical of Fluids, Vol. 19, No. 12, 2007, Article ID: 127101. doi:10.1063/1.2784532

[15] S. Chakraborty and S. Ray, “Mass Flow-Rate Control through Time Periodic Electro-Osmotic Flows in Circular Microchannels,” Physical of Fluids, Vol. 20, No. 8, 2008, Article ID: 083602. doi:10.1063/1.2949306

[16] Y. J. Jian, L. G. Yang and Q. S. Liu. “Time Periodic Electro-Osmotic Flow through a Microannulus,” Physical of Fluids, Vol. 22, No. 4, 2010, Article ID: 042001.
doi:10.1063/1.3358473

[17] H. J. Keh and H. C. Tseng, “Transient Electrokinetic Flow in Fine Capillaries,” Journal Colloid Interface Science, Vol. 242, No. 2, 2001, pp. 450-459.
doi:10.1006/jcis.2001.7797

[18] Y. J. Kang, C. Yang and X. Y. Huang, “Dynamic Aspects of Electroosmotic Flow in a Cylindrical Microcapillary,” International Journal of Engineering Science, Vol. 40, No. 20, 2002, pp. 2203-2221.
doi:10.1016/S0020-7225(02)00143-X

[19] C. C. Chang and C. Y. Wang, “Starting Electro-Osmotic Flow in an Annulus and in a Rectangular Channel,” Electrophoresis, Vol. 29, No. 14, 2008, pp. 2970-2979.
doi:10.1002/elps.200800041

[20] F. R. De Hoog, J. H. Knight and A. N. Stokes, “An Improved Method for Numerical Inversion of Laplace Transforms,” SIAM Journal on Scientific and Statistical Computing, Vol. 3, No. 3, 1982, pp. 357-366.
doi:10.1137/0903022