AMPC  Vol.3 No.2 , June 2013
Characterization of Chromium Substituted Cobalt Nano Ferrites Synthesized by Citrate-Gel Auto Combustion Method
Abstract: Co-Cr nano-ferrites, having the chemical formula CoCrxFe2-xO4 (where x = 0.0, 0.1, 0.3, 0.5, 0.7, 0.9 and 1.0), were synthesized by the Citrate-gel auto combustion method. Synthesized powders were sintered at 500°C for 4 hours in an air and were characterized by XRD, SEM and EDS. XRD analysis showed cubic spinel structure of the ferrites and the crystallite sizes (D) were found in the range of 6 - 12 nm. The values of lattice parameter (a) decreased and X-ray density (dx) increased with the increase of Cr content. Scanning Electron Microscopic (SEM) studies revealed nano crystalline nature of the samples. An elemental composition of the samples was studied by Energy Dispersive Spectroscopy (EDS). The observed results can be explained on the basis of composition and crystal size.
Cite this paper: M. Raghasudha, D. Ravinder and P. Veerasomaiah, "Characterization of Chromium Substituted Cobalt Nano Ferrites Synthesized by Citrate-Gel Auto Combustion Method," Advances in Materials Physics and Chemistry, Vol. 3 No. 2, 2013, pp. 89-96. doi: 10.4236/ampc.2013.32014.

[1]   P. V. Reddy and T. S. Rao, “Dielectric Behavior of Mixed Li-Ni Ferrites at Low Frequencies,” Journal of Less Common Metals, Vol. 86, 1982, pp. 255-261. doi:10.1016/0022-5088(82)90211-9

[2]   G. Blasse, Philips Research Reports, Suppl. 3, 1964.

[3]   J. Smit and H. P. J. Wijn, “Ferrites,” Philips Technical Library, Eindhoven, 1959.

[4]   K. Ishino and Y. Narumiya, “Development of Magnetic Ferrites: Control and Application of Losses,” American Ceramic Society Bulletin, Vol. 66, No. 10, 1987, pp. 1469-1474.

[5]   D. H. Kim, S. H. Lee, K. N. Kim, K. M. Kim, I. B. Shin and Y. K. Lee, “Cytotoxicity of Ferrite Particles by MTT and Agar Diffusion Methods for Hyperthermic Application,” Journal of Magnetism and Magnetic Materials, Vol. 293, No. 1, 2005, pp. 287-292. doi:10.1016/j.jmmm.2005.02.078

[6]   S. Somiya, S. Aldinger, N. Claussen, R. M. Uchino, R. M. Uchino, K. Koumto and K. Kanenoin, “Handbook of Advanced Ceramics, Vol. II, Processing and Their Applications,” Elsevier Academic Press, Waltham, 2003, p. 394.

[7]   F. Zhang, S. Kantake, Y. Kitamoto and M. Abe, “SpinSpray Ferrite-Plated co Ferrite Films with High Coercivity for Perpendicular Magnetic Recording Media,” IEEE Transactions on Magnetics, Vol. 35, No. 5, 1999, pp. 2751-2753. doi:10.1109/20.800974

[8]   R. Arulmurugan, G. Vaidyanathan, S. Sendhilnathan and B. Jeyadavan, “Mn Zn Ferrite Nanoparticles for Ferrofluid Preparation: Study on Thermal-Magnetic Properties,” Journal of Magnetism and Magnetic Materials, Vol. 298, No. 2, 2006, pp. 83-94. doi:10.1016/j.jmmm.2005.03.002

[9]   J. A. Paulsen, A. P. Ring, C. C. HLO, J. E. Snyder and D. C. Jiles, “Manganese-Substituted Cobalt Ferrite Magnetostrictive Materials for Magnetic Stress Sensor Applications,” Journal of Applied Physics, Vol. 97, No. 4, 2005, Article ID: 044552. doi:10.1063/1.1839633

[10]   R. C. O. Handley, “Modern Magnetic Materials Principles and Applications,” Wiley, New York, 2000.

[11]   A. Hauet, J. Teillet, B. Hannoyer and M. Lenglet, “Mössbauer Study of Co and Ni Ferrichromites,” Physics Status Solidi A, Vol. 103, No. 1, 1987, pp. 257-261. doi:10.1002/pssa.2211030129

[12]   L. G. Antoshina, A. N. Goryaga and R. R. Annarv, “Magnetization Processes of the Sample CoFeCrO4 with Frustrated Magnetic Structure,” Journal of Magnetism and Magnetic Materials, Vol. 195, No. 3, 1999, pp. 608-610. doi:10.1016/S0304-8853(99)00230-9

[13]   T. Tsushima, “Magnetic Properties of Ferrite-Chromite Series of Nickel and Cobalt,” Journal of Physics Society of Japan, Vol. 18, 1963, pp. 1162-1166. doi:10.1143/JPSJ.18.1162

[14]   K. Krieble, C. C. H. Lo, Y. Melikhov and J. E. Snyder, “Investigation of Cr Substitution in Co Ferrite (CoCrxFe2-xO4) Using Mossbauer Spectroscopy,” Journal of Applied Physics, Vol. 99, No. 8, 2006, Article ID: 08M912. doi:10.1063/1.2167051

[15]   M. J. Iqbal and M. R. Siddiquah, “Electrical and Magnetic Properties of Chromium Substituted Cobalt Ferrite Nano Materials,” Journal of Alloys and Compounds, Vol. 453, No. 1-2, 2008, pp. 513-518. doi:10.1016/j.jallcom.2007.06.105

[16]   M. Anisur-Rehman, M. Ansari, Z. N. Mughal, M. S. Awan and A. Maqsood, “Synthesis and Thermoelectric Studies in Cr doped Cobalt Ferrite Nano Paticles,” Key Engineering Materials, Advanced Materials XII, Vol. 510-511, 2012, pp. 171-176. doi:10.4028/

[17]   P. P. Hankare, U. B. Sankpal, R. P. Patel, P. D. Lokhande and R. Sasikala, “Synthesis, Characterization and Catalytic Activity of Chromium Substituted Cobalt Ferro Spinels,” Materials Science and Engineering: B, Vol. 176, No. 2, 2011, pp. 103-109. doi:10.1016/j.mseb.2010.10.005

[18]   B. D. Cullity, “Elements of XR-Diffraction,” Addison Weseley Publishing, Reading, 1959, p. 132.

[19]   L. Vegard, “The Constitution of Mixed Crystals and the Space Occupied by Atoms,” Zeitsch rift fiir Physics, Vol. 5, No. 17, 1921, pp.17-23.

[20]   V. B. Kawade, G. K. Bichile and K. M. Jadhav, “X-Ray and Infrared Studies of Chromium Substituted Magnesium Ferrite,” Material Letters, Vol. 42, No. 1-2, 2000, pp. 33-37. doi:10.1016/S0167-577X(99)00155-X

[21]   R. Arulmurugan, B. Jeyadevan, G. Vaidyanathan and S. Sendhilnathan, “Effect of Zinc Substitution on Co-Zn and Mn-Zn Ferrite Nanoparticles Prepared by Coprecipitation,” Journal of Magnetism and Magnetic Materials, Vol. 288, 2005, pp. 470-477. doi:10.1016/j.jmmm.2004.09.138

[22]   R. C. kumbale, P. A. sheikh, S. S. Kamble and Y. D. kolekar, “Effect of Cobalt Substitution on Structural Magnetic and Electric Properties of Nickel Ferrite,” Journal of Alloys and Compounds, Vol. 478, No. 1-2, 2009, pp. 599-603. doi:10.1016/j.jmmm.2005.03.007