OPJ  Vol.3 No.2 , June 2013
Microstructure and 355 nm Laser-Induced Damage Characteristics of Al2O3 Films Irradiated with Oxygen Plasma under Different Energy
Abstract: Al2O3 films were prepared using electron beam evaporation at room temperature. The samples were irradiated with oxygen plasma under different energy. The variations in average surface defect density and root mean square (RMS) surface roughness were characterized using an optical microscope and an atomic force microscope. Surface average defect density increased after plasma treatment. The RMS surface roughness of the samples decreased from 1.92 nm to 1.26 nm because of surface atom restructuring after oxygen plasma conditioning. A 355 nm laser-induced damage experiment indicated that the as-grown sample with the lowest defect density exhibited a higher laser-induced damage threshold (1.12 J/cm2) than the other treated samples. Laser-induced damage images revealed that defect is one of the key factors that affect laser-induced damage on Al2O3 films.
Cite this paper: D. Zhang, Y. Li, J. Luo, Z. Zheng, G. Liang, X. Cai, F. Ye, P. Fan and J. Huang, "Microstructure and 355 nm Laser-Induced Damage Characteristics of Al2O3 Films Irradiated with Oxygen Plasma under Different Energy," Optics and Photonics Journal, Vol. 3 No. 2, 2013, pp. 152-157. doi: 10.4236/opj.2013.32025.

[1]   B. Cho, J. E. Rudisill and E. Danielewicz, “193 nm Laser Induced Spectral Shift in HR Coated Mirrors,” Optical Engineering, Vol. 51, No. 12, 2012, Article ID: 121804. doi:10.1117/1.OE.51.12.121804

[2]   R. Thielsch, A. Gatto, J. Heber and N. Kaiser, “A Comparative Study of the UV Optical and Structural Proper ties of SiO2, Al2O3, and HfO2 Single Layers Deposited by Reactive Evaporation, Ion-Assisted Deposition and Plasma Ion-Assisted Deposition,” Thin Solid Films, Vol. 410, No. 1-2, 2002, pp. 86-93. doi:10.1016/S0040-6090(02)00208-0

[3]   M. Reichling A. Bodemann and N. Kaiser, “Defect Induced Laser Damage in Oxide Multilayer Coatings for 248 nm,” Thin Solid Films, Vol. 320, No. 2, 1998, pp. 264-279. doi:10.1016/S0040-6090(97)00399-4

[4]   J. Koo, S. Kim, S. Jeon, H. Jeon, Y. Kim and Y. Won, “Characteristics of Al2O3 Thin Films Deposited Using Dimethylaluminum Isopropoxide and Rimethylaluminum Precursors by the Plasma-Enhanced Atomic-Layer Deposition Method,” Journal of the Korean Physical Society, Vol. 48, No. 1, 2006, pp. 131-136.

[5]   X. Tang, F. Luo, W. Zhou and D. Zhu, “Alumina Thin Film Prepared by Direct Current Reactive Magnetron Sputtering,” Hot Working Technology, Vol. 40, No. 14, 2011, pp. 120-123.

[6]   V. V. Mamutin, V. A. Vekshin, V. Y. Davydov, V. V. Ratnikov, Y. A. Kudriavtsev, B. Y. Ber, V. V. Emtsev and S. V. Ivanov, “Mg-Doped Hexagonal InN/Al2O3 Films Grown by MBE,” Physica Status Solidi A—Applied Research, Vol. 176, No. 1, 1999, pp. 373-378. doi:10.1002/(SICI)1521-396X(199911)176:1<373::AID-PSSA373>3.0.CO;2-I

[7]   T. Ivanova, A. Harizanova, T. Koutzarova and B. Vertruyen, “Preparation and Characterisation of Ag Incorporated Al2O3 Nanocomposite Films Obtained by Sol-Gel Method,” Crystal Research and Technology, Vol. 47, No. 5, 2012, pp. 579-584. doi:10.1002/crat.201200027

[8]   N. Matsumura and T. Hayashi, “Preparation of Crystal line Al2O3 Films by Ion Beam Sputtering Combined with Oxygen Ion Irradiation and Their Wear Resistance Properties,” Journal of the Japan Institute of Metals, Vol. 61, No. 6, 1997, pp. 528-534.

[9]   X. Duan, N. H. Tran, N. K. Roberts and R. N. Lamb, “Single-Source Chemical Vapor Deposition of Clean Ori ented Al2O3 Thin Films,” Thin Solid Films, Vol. 517, No. 24, 2009, pp. 6726-6730. doi:10.1016/j.tsf.2009.05.032

[10]   K. S. Shamala, L. C. S. Murthy and K. Narasimha Rao, “Studies on Optical and Dielectric Properties of Al2O3 Thin Films Prepared by Electron Beam Evaporation and Spray Pyrolysis Method,” Materials Science and Engineering B, Vol. 106, No. 3, 2004, pp. 269-274. doi:10.1016/j.mseb.2003.09.036

[11]   M.-Q. Zhan, Z.-L. Wu and Z.-X. Fan, “Working Pressure Dependence of Properties of Al2O3 Thin Films Prepared by Electron Beam Evaporation,” Chinese Physics Letters, Vol. 25, No. 2, 2008, p. 563. doi:10.1088/0256-307X/25/2/057

[12]   S. L. Chen, Y. A. Zhao, Z. K. Yu, Z. Fang, D. W. Li, H. B. He and J. D. Shao, “Femtosecond Laser-Induced Dam age of HfO2/SiO2 Mirror with Different Stack Structure,” Applied Optics, Vol. 51, No. 25, 2012, pp. 6188-6195. doi:10.1364/AO.51.006188

[13]   M. Zhou, J. D. Shao, Z. X. Fan, Y. A. Zhao and D. W. Li, “Effect of Multiple Wavelengths Combination on Laser Induced Damage in Multilayer Mirrors,” Optics Express, Vol. 17, No. 22, 2009, pp. 20313-20320. doi:10.1364/OE.17.020313

[14]   Z. L. Xia, R. Wu and H. Wang, “Laser Damage Mechanism of Porous Al2O3 Films Prepared by a Two-Step Anodization Method,” Optics Communications, Vol. 285, No. 6, 2012, pp. 1335-1340. doi:10.1016/j.optcom.2011.10.059

[15]   B. Wang, Y. Qin, X. W. Ni, Z. H. Shen and J. Lu, “Effect of Defects on Long-Pulse Laser-Induced Damage of Two Kinds of Optical Thin Films,” Applied Optics, Vol. 49, No. 29, 2010, pp. 5537-5544.doi:10.1364/AO.49.005537

[16]   J. Dijon, T. Poiroux and C. Desrumaux, “Nano Absorbing Centers: A Key Point in Laser Damage of Thin Films,” SPIE Proceedings, Vol. 2966, 1997, pp. 315-325. doi:10.1117/12.274229

[17]   D. Reicher; P. Black and K. Jungling, “Defect Formation in Hafnium Dioxide Thin Films,” Applied Optics, Vol. 39, No. 10, 2000, pp. 1589-1599. doi:10.1364/AO.39.001589

[18]   X. Li, X. F. Liu, Y. A. Zhao, J. D. Shao and Z. X. Fan, “Laser-Conditioning Mechanism of ZrO2/SiO2 HR Films with Fitting Damage Probability Curves of Laser-Induced Damage,” Chinese Optics Letters, Vol. 8, No. 6, 2010, pp. 598-600. doi:10.3788/COL20100806.0598

[19]   D. P. Zhang, J. D. Shao, D. W. Zhang, S. H. Fan, T. Y. Tan and Z. X. Fan, “Employing Oxygen-Plasma Posttreatment to Improve the Laser-Induced Damage Threshold of ZrO2 Films Prepared by the Electron Beam Evaporation Method,” Optics Letters, Vol. 29, No. 24, 2004, pp. 2870-2872. doi:10.1364/OL.29.002870

[20]   ISO 11254-1:2000, “Lasers and Laser Related Equipment Determination of Laser-Induced Damage Threshold of Optical Surfaces,” Part I. 1-on-1 Test.

[21]   M. A. C. de Araújo, R. Silva, E. de Lima, D. P. Pereira and P. C. de Oliveira, “Measurement of Gaussian Laser Beam Radius Using the Knife-Edge Technique: Improvement on Data Analysis,” Applied Optics, Vol. 48, No. 2, 2009, pp. 393-396. doi:10.1364/AO.48.000393

[22]   D. P. Zhang, J. D. Shao, Y. A. Zhao, S. H. Fan, R. J. Hong and Z. X. Fan, “Laser-Induced Damage Threshold of ZrO2 Thin Films Prepared at Different Oxygen Partial Pressures by Electron-Beam Evaporation,” Journal of Vacuum Science & Technology A, Vol. 23, 2005, pp. 197-200. doi:10.1116/1.1842111

[23]   D. P. Zhang, P. Fan, X. M. Cai, G. X. Liang and J. D. Shao, “Influence of Oxygen Plasma Treatment on Proper ties of ZrO2 Films Prepared by e-Beam Evaporation Techniques,” Solid State Communications, Vol. 148, No. 1-2, 2008, pp. 22-24. doi:10.1016/j.ssc.2008.07.019

[24]   C. Xu, S. Yang, S. H. Zhang, J. N. Niu, Y. H. Qiang, J. T. Liu and D. W. Li, “Temperature Dependences of Optical Properties, Chemical Composition, Structure, and Laser Damage in Ta2O5 Films,” Chinese Physics B, Vol. 21, No. 11, 2012, Article ID: 114213. doi:10.1088/1674-1056/21/11/114213