WJM  Vol.3 No.3 , June 2013
Dynamic Simulation and Hemolysis Evaluation of the Regurgitant Flow over a Tilting-Disc Mechanical Heart Valve in Pulsatile Flow
ABSTRACT

Regurgitation in the heart diastolic phase represents a critical flow condition associated with many heart valve design considerations. The finite volume method, the Low-Reynolds-Number k-ω turbulent model and sliding mesh model are employed to solve and compare the complex flow field and the torque in each case. The end results expected from a cardiovascular CFD analysis are not limited only to the flowfield investigations. More importantly, it needs an evaluation criterion to judge if the design is acceptable as considered from a broader blood cell damage or activation perspective. In this study, blood cell damage index developed based on stress-time empirical rule and Lagrangian particle tracking is introduced to assess the viscous and turbulence-induced stresses effect to the blood cells.


Cite this paper
U. Hsu and P. Lu, "Dynamic Simulation and Hemolysis Evaluation of the Regurgitant Flow over a Tilting-Disc Mechanical Heart Valve in Pulsatile Flow," World Journal of Mechanics, Vol. 3 No. 3, 2013, pp. 160-168. doi: 10.4236/wjm.2013.33014.
References
[1]   G. J. Cheon and K. B. Chandran, “Dynamic Behavior Analysis of Mechanical Monoleaflet Heart Valve Pros theses in the Opening Phase,” Journal of Biomechanical Engineering, Vol. 115, No. 4A, 1993, pp. 389-395. doi:10.1115/1.2895502

[2]   V. Kini, C. Bachmann, A. Fontaine, S. Deutsch and J. M. Tarbell, “Flow Visualization in Mechanical Heart Valves: Occluder Rebound and Cavitation Potential,” Annals of Biomedical Engineering, Vol. 28, No. 4, 2000, pp. 431-441. doi:10.1114/1.281

[3]   D. Bluestein, E. Rambod and M. Gharib, “Vortex Shed ding as a Mechanism for Free Emboli Formation in Mechanical Heart Valves,” Journal of Biomechanical Engineering, Vol. 122, No. 2, 2000, pp. 125-134. doi:10.1115/1.429634

[4]   L. F. Hiratzke, N. T. Kouchoukos, G. L. Grunkemeier, D. C. Miller, H. E. Scully and A. S. Wechlser, “Outlet Strut Fracture of the Bjork-Shiley 60° Convexo-Concave Valve: Current Information and Recommendations for Patient Care,” Journal of the American College of Cardiology, Vol. 11, No. 5, 1998, pp. 1130-1137.

[5]   T. A. Odell, J. Durandt, D. M. Shama and S. Vythilingum, “Spontaneous Embolization of a St. Jude Prosthetic Mitral Valve Leaflet,” Annals of Thoracic Surgery, Vol. 39, No. 6, 1985, pp. 569-572. doi:10.1016/S0003-4975(10)62003-6

[6]   A. A. Mikhail, R. Ellis and S. Johnson, “Eighteen-Year Evolution from the Lillehei-Kaster Valve to the Omni Design,” Annals of Thoracic Surgery, Vol. 48, No. 3, 1989, pp. 561-564. doi:10.1016/0003-4975(89)90641-3

[7]   C. W. Lillehei, A. Nakib, R. L. Kaster, B. R. Kalke and J. R. Rees, “The Origin and Development of Three New Mechanical Valve Designs: Thoroidal Disc, Pivoting Disc, and Rigid Bileaflet Cardiac Prostheses,” Annals of Thoracic Surgery, Vol. 48, No. 3, 1989, pp. S35-S37. doi:10.1016/0003-4975(89)90630-9

[8]   R. Paul, J. Apel, S. Klaus, F. Schügner, P. Schwindke and H. Reul, “Shear Stress Related Blood Damage in Laminar Couette Flow,” Artificial Organs, Vol. 27, No. 6, 2003, pp. 517-529. doi:10.1046/j.1525-1594.2003.07103.x

[9]   M. Giersiepen, L. J. Wurzinger, R. Opitz and H. Reul, “Estimation of Shear Stress-Related Blood Damage in Heart Valve Prostheses—In Vitro Comparison of 25 Aortic Valves,” The International Journal of Artificial Organs, Vol. 13, No. 5, 1990, pp. 300-306.

[10]   L. J. Wurzinger, R. Opitz and H. Eckstein, “Mechanical Bloodtrauma: An Overview,” Angeiologie, Vol. 38, No. 3, 1986, pp. 81-97.

[11]   A. P. Yoganathan, Z. He and S. C. Jones, “Fluid Mechanics of Heart Valve,” Annual Review of Biomedical Engineering, Vol. 6, 2004, pp. 331-362. doi:10.1146/annurev.bioeng.6.040803.140111

[12]   T. K. Hung and G. B. Schuessler, “Computational Analysis as an Aid to the Design of Heart Valves,” Chemical Engineering Progress Symposium Series, Vol. 10, No. 9, 1971, pp. 8-17.

[13]   A. D. Au and H. S. Greenfield, “Computer Graphics Analysis of Stresses in Blood Flow through a Prosthetic Heart Valve,” Computers in Biology and Medicine, Vol. 4, No. 3-4, 1975, pp. 279-291. doi:10.1016/0010-4825(75)90039-6

[14]   C. S. Peskin, “Flow Patterns around Heart Valves: A Numerical Method,” Journal of Computational Physics, Vol. 10, No. 2, 1972, pp. 252-271. doi:10.1016/0021-9991(72)90065-4

[15]   J. de Hart, G. W. M. Peters, P. J. G. Schreurs and F. P. T. Baaijens, “A Two-Dimensional Fluid-Structure Interaction Model of the Aortic Value,” Journal of Biomechanics, Vol. 33, No. 9, 2000, pp. 1079-1088. doi:10.1016/S0021-9290(00)00068-3

[16]   M. J. King, T. David and J. Fisher, “Three-Dimensional Study of the Effect of Two Leaflet Opening Angles on the Time-Dependent Flow Througha Bileaflet Mechanical Heart Valve,” Medical Engineering & Physics, Vol. 19, No. 5, 1997, pp. 235-241. doi:10.1016/S1350-4533(96)00066-5

[17]   C. S. Peskin and D. M. McQueen, “Modeling Prosthetic Heart Valves for Numerical Analysis of Blood Flow through the Heart,” Journal of Computational Physics, Vol. 37, No. 1, 1980, pp. 113-132. doi:10.1016/0021-9991(80)90007-8

[18]   M. Vinokur, “An Analysis of Finite-Difference and Finite-Volume Formulations of Conservation Laws,” Journal of Computational Physics, Vol. 81, No. 1, 1989, pp. 1-52. doi:10.1016/0021-9991(89)90063-6

[19]   S. V. Patankar, “Numerical Heat Transfer and Fluid Flow,” Hemisphere, Ch. 6, 1980.

[20]   C. Kleinstreuer and Z. Zhang, “Laminar-to-Turbulent Fluid-Particle Flows in Human Airway Model,” International Journal of Multiphase Flow, Vol. 29, No. 2, 2003, pp. 271-289. doi:10.1016/S0301-9322(02)00131-3

[21]   H. L. Leo, H. Simon, J. Carberry, S. C. Lee and A. Yoga Nathan, “A Comparison of Flow Field Structures of Two Tri-Leaflet Polymeric Heart Valves,” Annals of Biomedical Engineering, Vol. 33, No. 4, 2005, pp. 429-443. doi:10.1007/s10439-005-2498-z

[22]   M. Grigioni, C. Daniele and U. Morbiducci, et al., “The Power-Law Mathematical Model for Blood Damage Prediction: Analytical Developments and Physical Inconsistencies,” Artificial Organs, Vol. 28, No. 5, 2004, pp. 467-475. doi:10.1111/j.1525-1594.2004.00015.x

[23]   D. F. Su and C. Y. Miao, “Blood Pressure Variability and Organ Damage,” Clinical and Experimental Pharmacology and Physiology, Vol. 28, No. 9, 2001, pp. 709-715. doi:10.1046/j.1440-1681.2001.03508.x

[24]   R. Paul, J. Apel, S. Klaus, F. Schagner, P. Schwindke and H. Reul, “Shear Stress Related Blood Damage in Laminar Couette Flow,” Artificial Organs, Vol. 27, No. 6, 2003, pp. 517-529. doi:10.1046/j.1525-1594.2003.07103.x

[25]   D. Arora, M. Behr and M. Pasquali, “A Tensor-Based Measure for Estimating Blood Damage,” Artificial Organs, Vol. 28, No. 11, 2004, pp. 1002-1015. doi:10.1111/j.1525-1594.2004.00072.x

 
 
Top