[1] R. D. Cortright, R. R. Davda and J. A. Dumesic, “Hydrogen from Catalytic Reforming of Biomass-Derived Hydrocarbons in Liquid Water,” Nature, Vol. 418, No. 6901, 2002, pp. 964-967. doi:10.1038/nature01009
[2] D. K. Liguras, D. I. Kondarides and X. E. Verykios, “Production of Hydrogen For Fuel Cells by Steam Reforming of Ethanol over Supported Noble Metal Catalysts,” Applied Catalysis B: Environmental, Vol. 43, No. 4, 2003, pp. 345-354. doi:10.1016/S0926-3373(02)00327-2
[3] P. Ramirez de la Piscina and N. Homs, “Use of Biofuels to Produce Hydrogen (Reformation Processes),” Chemical Society Review, Vol. 37, No. 11, 2008, pp. 2459-2467. doi:10.1039/b712181b
[4] F. Haga, T. Nakajima, H. Miya and S. Mishima, “Catalytic Properties of Supported Cobalt Catalysts for Steam Reforming of Ethanol,” Catalysis Letters, Vol. 48, No. 3- 4, 1997, pp. 223-227. doi:10.1023/A:1019039407126
[5] J. Llorca, N. Homs, J. Sales and P. Ramirez de la Piscina, “Ef?cient Production of Hydrogen over Supported Cobalt Catalysts from Ethanol Steam Reforming,” Journal of Catalysis, Vol. 209, No. 2, 2002, pp. 306-317. doi:10.1006/jcat.2002.3643
[6] M. C. Batista, R. K. S. Santos, E. M. Assaf, J. M. Assaf and E. A. Ticianelli, “High Ef?ciency Steam Reforming of Ethanol by Cobalt-Based Catalysts,” Journal of Power Sources, Vol. 134, No. 1, 2004, pp. 27-32. doi:10.1016/j.jpowsour.2004.01.052
[7] J. Llorca, P. Ramirez de la Piscina, J.-A. Dalmon, J. Sales and N. Homs, “CO-Free Hydrogen from Steam-Reforming of Bioethanol over ZnO-Supported Cobalt Catalysts Effect of the Metallic Precursor,” Applied Catalysis B: Environmental, Vol. 43, No. 4, 2003, pp. 355-369. doi:10.1016/S0926-3373(02)00326-0
[8] J. M. Pigos, C. J. Brooks, G. Jacobs and B. H. Davis, “Low Temperature Water-gas Shift: The Effect of Alkali Doping on the C-H Bond of Formate over Pt/ZrO2 Catalysts,” Applied Catalysis A: General, Vol. 328, No. 1, 2007, pp. 14-26. doi:10.1016/j.apcata.2007.04.001
[9] C. H. Wang, K. F. Ho, J. Y. Z. Chiou, C. L. Lee, S. Y. Yang, C. T. Yeh and C. B. Wang, “Oxidative Steam Reforming of Ethanol over PtRu/ZrO2 Catalysts Modi?ed with Sodium and Magnesium,” Catalysis Communications, Vol. 12, No. 10, 2011, pp. 854-858. doi:10.1016/j.catcom.2011.02.002
[10] Z. Cheng, Q. Wu, J. Li and Q. Zhu, “Effects of Promoters and Preparation Procedures on Reforming of Methane with Carbon Dioxide over Ni/Al2O3 Catalyst,” Catalalysis Today, Vol. 30, No. 1-3, 1996, pp. 147-155. doi:10.1016/0920-5861(95)00005-4
[11] D. H. Olson, G. T. Kokotailo, S. L. Lawton and W. M. Meler, “Crystal Structure and Structure-Related Properties of ZSM-5,” The Journal of Physical Chemistry, Vol. 85, No. 15, 1981, pp. 2238-2243. doi:10.1021/j150615a020
[12] C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli and J. S. Beck, “Ordered Mesoporous Molecular Sieves Synthesized by a Liquid-crystal Template Mechanism,” Nature, Vol. 359, No. 6397, 1992, pp. 710-712. doi:10.1038/359710a0
[13] D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka and G. D. Stucky, “Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores,” Science, Vol. 279, No. 5350, 1998, pp. 548-552. doi:10.1126/science.279.5350.548
[14] A. J. Vizcaíno, A. Carrero and J. A. Calles, “Hydrogen Production by Ethanol Steam Reforming over Cu-Ni Supported Catalysts” International Journal of Hydrogen Energy, Vol. 32, No. 10-11, 2007, pp. 1450-1461. doi:10.1016/j.ijhydene.2006.10.024
[15] A. Carrero, J. A. Calles and A. J. Vizcaíno, “Hydrogen Production by Ethanol Steam Reforming over Cu-Ni/ SBA-15 Supported Catalysts Prepared by Direct Synthesis and Impregnation,” Applied Catalysis A: General, Vol. 327, No. 1, 2007, pp. 82-94. doi:10.1016/j.apcata.2007.04.030
[16] A. J. Vizcaíno, A. Carrero and J. A. Calles, “Ethanol Steam Reforming on Mg- and Ca-modi?ed Cu-Ni/SBA-15 Catalysts,” Catalysis Today, Vol. 146, No. 1-2, 2009, pp. 63- 70. doi:10.1016/j.cattod.2008.11.020
[17] J. A. Calles, A. Carrero and A. J. Vizcaíno, “Ce and La Modi?cation of Mesoporous Cu-Ni/SBA-15 Catalysts for Hydrogen Production through Ethanol Steam Reforming,” Microporous and Mesoporous Materials, Vol. 119, No. 1-3, 2009, pp. 200-207. doi:10.1016/j.micromeso.2008.10.028
[18] A. Carrero, J. A. Calles and A. J. Vizcaino, “Effect of Mg and Ca Addition on Coke Deposition over Cu-Ni/SiO2 Catalysts for Ethanol Steam Reforming,” Chemical Engineering Journal, Vol. 163, No. 3, 2010, pp. 395-402. doi:10.1016/j.cej.2010.07.029
[19] K. Wang, X. Li, S. Ji, X. Shi and J. Tang, “Effect of CexZr1-xO2 Promoter on Ni-Based SBA-15 Catalyst for Steam Reforming of Methane,” Energy & Fuels, Vol. 23, No. 1, 2009, pp. 25-31. doi:10.1021/ef800553b
[20] H. Wang, Y. Liu, L. Wang and Y. Qin, “Study on the Carbon Deposition in Steam Reforming of Ethanol over Co/CeO2 Catalyst,” Chemical Engineering Journal, Vol. 145, No. 1, 2008, pp. 25-31. doi:10.1016/j.cej.2008.02.021
[21] B. Huang, X. Li, S. Ji, B. Lang, F. Habimana and C. Li, “Effect of MgO Promoter on Ni-based SBA-15 Catalysts for Combined Steam and Carbon Dioxide Reforming of Methane,” Journal of Natural Gas Chemistry, Vol. 17, No. 3, 2008, pp. 225-231. doi:10.1016/S1003-9953(08)60055-9
[22] W. Liu, S. Y. Lai, H. X. Dai, S. J. Wang, H. Z. Sun and C. T. Au, “MgO-Modified VOx/SBA-15 as Catalysts for the Oxidative Dehydrogenation of n-Butane,” Catalysis Today, Vol. 131, No. 1-4, 2008, pp. 450-456. doi:10.1016/j.cattod.2007.10.054
[23] M. A. Zamudio, S. Bensaid, D. Fino and N. Russo, “Influence of the MgCo2O4 Preparation Method on N2O Catalytic Decompositio,” Industrial & Engineering Chemistry Research, Vol. 50, No. 5, 2011, pp. 2622-2627. doi:10.1021/ie100658w
[24] Y. Sharma, N. Sharma, G. V. Subba Rao and B. V. R. Chowdari, “Studies on Spinel Cobaltites, FeCo2O4 and MgCo2O4 as Anodes for Li-ion batteries,” Solid State Ionics, Vol. 179, No. 15-16, 2008, pp. 587-597. doi:10.1016/j.ssi.2008.04.007
[25] V. R. Choudhary, K. C. Mondal and T. V. Choudhary, “CO2 Reforming of Methane to Syngas over CoOx/MgO Supported on Low Surface Area Macroporous Catalyst Carrier: Influence of Co Loading and Process Conditions,” Industrial & Engineering Chemistry Research, Vol. 45, No. 13, 2006, pp. 4597-4602. doi:10.1021/ie060260a
[26] C. B. Wang, C. C. Lee, J. L. Bi, J. Siang, J. Y. Liu and C. T. Yeh, “Study on the Steam Reforming of Ethanol over Cobalt Oxides,” Catalysis Today, Vol. 146, No. 1-2, 2009, pp. 76-81. doi:10.1016/j.cattod.2008.12.010
[27] H. Y. Wang and E. Ruckenstein, “CO2 Reforming of CH4 over Co/MgO Solid Solution Catalysts—Effect of Calcination Temperature and Co loading,” Applied Catalysis A: General, Vol. 209, No. 1-2, 2001, pp. 207-215. doi:10.1016/S0926-860X(00)00753-5
[28] A. A. Nayeb-Hashemi and J. B. Clark, “The Co-Mg (Cobalt-Magnesium) System,” Bulletin of Alloy Phase Diagrams, Vol. 8, No. 4, 1987, pp. 352-354.
[29] E. Ruckenstein and H. Y. Wang, “Carbon Deposition and Catalytic Deactivation during CO2 Reforming of CH4 over Co/γ-Al2O3 Catalysts,” Journal of Catalysis, Vol. 205, No. 2, 2002, pp. 289-293. doi:10.1006/jcat.2001.3458
[30] I. Suelves, M. J. Lázaro, R. Moliner, B. M. Corbella and J. M. Palacios, “Hydrogen Production by Thermo Catalytic Decomposition of Methane on Ni-Based Catalysts: In?uence of Operating Conditions on Catalyst Deactivation and Carbon Characteristics,” International Journal of Hydrogen Energy, Vol. 30, No. 15, 2005, pp. 1555-1567. doi:10.1016/j.ijhydene.2004.10.006