CMB  Vol.3 No.2 , June 2013
Impact of Mutations on K-Ras-p120GAP Interaction
ABSTRACT


The K-Ras protein plays a key role in the signal transduction cascade. Certain mutations in K-Ras lead to a permanent “on” state which results in tumorigenesis due to failed interaction with the GTPase activating protein (GAP). In this study, we examined the mutations E31N, D33N and D38N of K-Ras coupled and decoupled to wildtype GAP-334 and mutation K935N of GAP-334 coupled and decoupled to wildtype K-Ras, to illustrate the potential mechanism by which these mutants affect the interaction between the two proteins. We identify Tyr32 in the Ras Switch I region as a critical residue that acts as a gate to the GTP binding site and which needs to be “open” during Ras coupling with GAP to allow for insertion of GAP residue Arg789. This residue plays a vital role in stabilizing the transition state during GTP hydrolysis. The different mutations studied herein caused a reduced binding affinity, and the fluctuation of the Tyr32 side chain might hinder the insertion of Arg789. This may in turn be the cause of decreased GTP hydrolysis, and permanent on state of K-Ras, observed for these mutants.



Cite this paper
C. Gao and L. Eriksson, "Impact of Mutations on K-Ras-p120GAP Interaction," Computational Molecular Bioscience, Vol. 3 No. 2, 2013, pp. 9-17. doi: 10.4236/cmb.2013.32002.
References
[1]   K. Wennerberg, K. L. Rossman and C. J. Der, “The Ras Superfamily at a Glance,” Journal of Cell Science, Vol. 118, No. 5, 2005, pp. 843-846. doi:10.1242/jcs.01660

[2]   M. Macaluso, G. Russo, C. Cinti, et al., “Ras Family Genes: An Interesting Link between Cell Cycle and Cancer,” Journal of Cellular Physiology, Vol. 192, No. 2, 2002, pp. 125-130. doi:10.1002/jcp.10109

[3]   A. Fernández-Medarde and E. Santos, “Ras in Cancer and Developmental Diseases,” Genes & Cancer, Vol. 2, No. 3, 2011, pp. 344-358. doi:10.1177/1947601911411084

[4]   J. L. Bos, “Ras Oncogenes in Human Cancer: A Review,” Cancer Research, Vol. 49, No. 17, 1989, pp. 4682-4689.

[5]   C. A. Ellis and G. Clark, “The Importance of Being KRas,” Cellular Signalling, Vol. 12, No. 7, 2000, pp. 425-434. doi:10.1016/S0898-6568(00)00084-X

[6]   J. W. Keller, J. L. Franklin, R. Graves-Deal, et al., “Oncogenic KRAS Provides a Uniquely Powerful and Variable Oncogenic Contribution among RAS Family Members in the Colonic Epithelium,” Journal of Cellular Physiology, Vol. 210, No. 3, 2007, pp. 740-749. doi:10.1002/jcp.20898

[7]   I. Macara, K. Lounsbury, S. Richards, et al., “The Ras Superfamily of GTPases,” The FASEB Journal, Vol. 10, No. 5, 1996, pp. 625-630.

[8]   K. Scheffzek, M. R. Ahmadian, W. Kabsch, et al., “The Ras-RasGAP Complex: Structural Basis for GTPase Activation and Its Loss in Oncogenic Ras Mutants,” Science, Vol. 277, No. 5324, 1997, pp. 333-339. doi:10.1126/science.277.5324.333

[9]   C. K?tting, A. Kallenbach, Y. Suveyzdis, et al., “The GAP Arginine Finger Movement into the Catalytic Site of Ras Increases the Activation Entropy,” Proceedings of the National Academy of Sciences, Vol. 105, No. 17, 2008, pp. 6260-6265. doi:10.1073/pnas.0712095105

[10]   H. te Heesen, K. Gerwert and J. Schlitter, “Role of the Arginine Finger in Ras?RasGAP Revealed by QM/MM Calculations,” FEBS Letters, Vol. 581, No. 29, 2007, pp. 5677-5684. doi:10.1016/j.febslet.2007.11.026

[11]   B. L. Grigorenko, A. V. Nemukhin, I. A. Topol, et al., “QM/MM Modeling the Ras-GAP Catalyzed Hydrolysis of Guanosine Triphosphate,” Proteins: Structure, Function, and Bioinformatics, Vol. 60, No. 3, 2005, pp. 495-503. doi:10.1002/prot.20472

[12]   H. Kiaris and D. A. Spandidos, “Mutations of Ras Genes in Human Tumours (Review),” International Journal of Oncology, Vol. 7, No. 3, 1995, pp. 413-421.

[13]   P. Wegman, C. Ahlin and B. Sorbe, “Genetic Alterations in the K-Ras Gene Influence the Prognosis in Patients with Cervical Cancer Treated by Radiotherapy,” International Journal of Gynecological Cancer, Vol. 21, No. 1, 2011, pp. 86-91. doi:10.1097/IGC.0b013e3182049924

[14]   S. R. Lin, C. H. Hsu, J. H. Tsai, et al., “Decreased GTPase Activity of K-Ras Mutants Deriving from Human Functional Adrenocortical Tumours,” British Journal of Cancer, Vol. 82, No. 5, 2000, pp. 1035-1040.

[15]   M. S. Nur-E-Kamal, A. Sizeland, G. D’Abaco, et al., “Asparagine 26, Glutamic Acid 31, Valine 45, and Tyrosine 64 of Ras Proteins Are Required for Their Oncogenicity,” Journal of Biological Chemistry, Vol. 267, No. 3, 1992, pp. 1415-1418.

[16]   C. Oliveira, J. L. Westra, D. Arango, et al., “Distinct Patterns of KRAS Mutations in Colorectal Carcinomas According to Germline Mismatch Repair Defects and hMLH1 Methylation Status,” Human Molecular Genetics, Vol. 13, No. 19, 2004, pp. 2303-2311. doi:10.1093/hmg/ddh238

[17]   Y. Li, G. Bollag, R. Clark, et al., “Somatic Mutations in the Neurofibromatosis 1 Gene in Human Tumors,” Cell, Vol. 69, No. 2, 1992, pp. 275-28. doi:10.1016/0092-8674(92)90408-5

[18]   K. Scheffzek, M. R. Ahmadian, L. Wiesmüller, et al., “Structural Analysis of the GAP-Related Domain from Neurofibromin and Its Implications,” The EMBO Journal, Vol. 17, No. 15, 1998, pp. 4313-4327. doi:10.1093/emboj/17.15.4313

[19]   Molecular Operating Enviroment (MOE), Chemical Computing Group: Montreal, 2009.

[20]   B. Hess, C. Kutzner, D. van der Spoel, et al., “GROMACS 4: Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation,” Journal of Chemical Theory and Computation, Vol. 4, No. 3, 2008, pp. 435-447. doi:10.1021/ct700301q

[21]   J. Wang, P. Cieplak and P. A. Kollman, “How Well Does a Restrained Electrostatic Potential (RESP) Model Perform in Calculating Conformational Energies of Organic and Biological Molecules?” Journal of Computational Chemistry, Vol. 21, No. 12, 2000, pp. 1049-1074. doi:10.1002/1096-987X(200009)21:12<1049::AID-JCC3>3.0.CO;2-F

[22]   K. L. Meagher, L. T. Redman and H. A. Carlson, “Development of Polyphosphate Parameters for Use with the AMBER Force Field,” Journal of Computational Chemistry, Vol. 24, No. 9, 2003, pp. 1016-1025. doi:10.1002/jcc.10262

[23]   U. Essmann, L. Perera, M. Berkowitz, et al., “A Smooth Particle Mesh Ewald Method,” The Journal of Chemical Physics, Vol. 103, No. 19, 1995, pp. 8577-8593. doi:10.1063/1.470117

[24]   T. Darden, D. York and L. Pedersen, “Particle Mesh Ewald: An N log(N) Method for Ewald Sums in Large Systems,” The Journal of Chemical Physics, Vol. 98, No. 12, 1993, pp. 10089-10092. doi:10.1063/1.464397

[25]   H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, et al., “Molecular Dynamics with Coupling to an External Bath,” The Journal of Chemical Physics, Vol. 81, No. 8, 1984, pp. 3684-3690. doi:10.1063/1.448118

[26]   B. Hess, H. Bekker, H. J. C. Berendsen, et al., “LINCS: A Linear Constraint Solver for Molecular Simulations,” Journal of Computational Chemistry, Vol. 18, No. 12, 1997, pp. 1463-1472. doi:10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H

[27]   W. G. Hoover, “Canonical Dynamics: Equilibrium PhaseSpace Distributions,” Physical Review A, Vol. 31, No. 3, 1985, pp. 1695-1697. doi:10.1103/PhysRevA.31.1695

[28]   M. Parrinello and A. Rahman, “Polymorphic Transitions in Single Crystals: A New Molecular Dynamics Method,” Journal of Applied Physics, Vol. 52, No. 12, 1981, pp. 7182-7190. doi:10.1063/1.328693

[29]   A. A. Gorfe, B. J. Grant and J. A. McCammon, “Mapping the Nucleotide and Isoform-Dependent Structural and Dynamical Features of Ras Proteins,” Structure (London, England: 1993), Vol. 16, No. 6, 2008, pp. 885-896.

[30]   S. Lukman, B. J. Grant, A. A. Gorfe, et al., “The Distinct Conformational Dynamics of K-Ras and H-Ras A59G,” PLoS Computational Biology, Vol. 6, No. 9, 2010, Article ID: e1000922. doi:10.1371/journal.pcbi.1000922

 
 
Top