Back
 AJPS  Vol.4 No.5 , May 2013
Confirmation of Pearl Millet-Napiergrass Hybrids Using EST-Derived Simple Sequence Repeat (SSR) Markers
Abstract: Prospects for deploying perennial grasses that are currently considered leading candidates for dedicated energy crops over large acreages are debatable because of several limitations, including vegetative propagation or small seed size, low biomass production during the first growing season, and incomplete assessments of crop invasiveness risk. Pearl Millet-Napiergrass hybrids (“PMN”; Pennisetum glaucum [L.] R. Br. × P. purpureum Schumach.), in contrast, are large-seeded, sterile feedstocks capable of high biomass production during establishment year. Novel methods are warranted for confirmation of PMN hybrids, as traditional morphological observations can be inconclusive and chromosome number determination using cytological methods is laborious and time consuming. Six putative PMN lines were produced in this study, and 10 progeny from each line were evaluated using morphological traits, seed fertility, flow cytometry, and expressed sequence tag-simple sequence repeat (EST-SSR) markers. All putative hybrid lines were sterile and failed to produce seed. The PMN hybrids could not be distinguished from either parent using flow cytometry due to highly similar nuclear genome DNA contents. A number of paternal napiergrass-specific EST-SSRs were identified for each PMN line, and four paternal-specific EST-SSRs conserved across all napiergrass accessions were selected to screen the putative PMN hybrids. These EST-SSRs confirmed that all F1 individuals analyzed were PMN hybrids. The use of paternal-specific markers therefore provides a valuable tool in the development of both “Seeded-yet-Sterile” biofuel PMN feedstocks and additional PMN cultivar-and parental species-specific markers.
Cite this paper: C. Dowling, B. Burson, J. Foster, L. Tarpley and R. Jessup, "Confirmation of Pearl Millet-Napiergrass Hybrids Using EST-Derived Simple Sequence Repeat (SSR) Markers," American Journal of Plant Sciences, Vol. 4 No. 5, 2013, pp. 1004-1012. doi: 10.4236/ajps.2013.45124.
References

[1]   R. Samsom, S. Mani, R. Boddey, S. Sokhansanj, D. Quesada, S. Urguiaga, V. Reis and C.H. Lem, “The Potential of C4 Perennial Grasses for Developing a Global BIOHEAT Industry,” Critical Reviews in Plant Science, Vol. 24, No. 6, 2005, pp. 461-495. doi:10.1080/07352680500316508

[2]   J. Campbell, D. Lobell, R. Genova and C. Field, “The Global Potential of Bioenergy on Abandoned Agriculture Lands,” Environmental Science & Technology, Vol. 42, No. 15, 2008, pp. 5791-5794.

[3]   T. S. Cox, M. Bender, C. Picone, D. L. Van Tassel, J. B. Holland, E. C. Brummer, B. E. Zoeller, A. H. Paterson and W. Jackson, “Breeding Perennial Grain Crops,” Critical Reviews in Plant Science, Vol. 21, No. 2, 2002, pp. 59-91. doi:10.1080/0735-260291044188

[4]   P. R. Adler, S. J. Del Grosso and W. J. Parton, “Lifecycle Assessment of Net Greenhouse-Gas Flux for Bioenergy Cropping Systems,” Ecological Applications, Vol. 17, No. 3, 2007, pp. 675-691.

[5]   R. Lemus and R. Lal, “Bioenergy Crops and Carbon Sequestration,” Critical Reviews in Plant Science, Vol. 24, No. 1, 2005, pp. 1-21. doi:10.1080/07352680590910393

[6]   R. F. Follett, “Soil Management Concepts and Carbon Sequestration in Cropland Soils,” Soil and Tillage Research, Vol. 61, No. 1-2, 2001, pp. 77-92. doi:10.1016/S0167-1987(01)00180-5

[7]   G. W. Burton, “Hybrids between Napier Grass and Cattail Millet,” Journal of Heredity, Vol. 35, No. 8, 1944, pp. 227-232.

[8]   R. V. Osgood, W. W. Hanna and T. L. Tew, “Hybrid Seed Production of Pearl Millet × Napiergrass Triploid Hybrids,” Crop Science, Vol. 37, No. 3, 1997, pp. 998- 999. doi:10.2135/cropsci1997.0011183X003700030049x

[9]   J. Guretzky, “Switchgrass Establishment Requires Patience,” Ag News Views, The Samuel Roberts Noble Foundation, 2007. http://www.noble.org/ag/research/switchgrass/

[10]   United States Department of Agriculture (USDA), “US DA and DOE Fund 10 Research Projects to Accelerate Bioenergy Crop Production and Spur Economic Impact,” 2011. http://www.nifa.usda.gov/newsroom/newsroom.html

[11]   D. A. Diz and S. C. Schank, “Characterization of Seed Producing Pearl Millet × Napiergrass Hexaploid Hybrids,” Euphytica, Vol. 67, No. 1-2, 1993, pp. 143-149. doi:10.1007/BF00022737

[12]   S. C. Gupta and O. Mhere, “Identification of Superior Pearl Millet by Napier Hybrids and Napiers in Zimbabwe,” African Crop Science Journal, Vol. 5, No. 3, 1997, pp. 229-237. doi:10.4314/acsj.v5i3.27840

[13]   J. G. Mureithi, R. S. Tayler and W. Thorpe, “Productivity of Alley Farming with Leucaena (Leucaena leucocephala [Lam. de Wit]) and Napier Grass (Pennisetum purpureum [Schum.]) in Coastal Lowland Kenya,” Agroforestry Systems, Vol. 31, No. 1, 1995, pp. 59-78. doi:10.1007/BF00712055

[14]   P. Y. Kavana, J. B. Kizima, Y. N. Msanga, N. B. Kilongozi, B. S. J. Msangi, L. A. Kadeng'uka, S. Mngulu and P. K. Shimba, “Potential of Pasture and Forage for Ruminant Production in Eastern Zone of Tanzania,” Livestock Research for Rural Development, Vol. 17, No. 144, 2005. http://www.lrrd.org/lrrd17/12/kava17144.htm

[15]   M. Dujardin and W. W. Hanna, “Meiotic and Reproductive Behavior of Facultative Apomictic BC1 Offspring Derived from Pennisetum americanum × P. orientale Interspecific Hybrids,” Crop Science, Vol. 23, No. 1, 1983, pp. 156-160. doi:10.2135/cropsci1983.0011183X002300010043x

[16]   W. W. Hanna and W. G. Monson, “Yield, Quality, and Breeding Behavior of Pearl Millet × Napiergrass Interspecific Hybrids,” Agronomy Journal, Vol. 72, No. 2, 1980, pp. 358-360. doi:10.2134/agronj1980.00021962007200020024x

[17]   A. Wadi, Y. Ishii and S. Idota, “Effects of Cutting Interval and Cutting Height on Dry Matter Yield and Overwintering Ability at the Established Year in Pennisetum Species,” Plant Production Science, Vol. 7, No. 1, 2004, pp. 88-96. doi:10.1626/pps.7.88

[18]   L. Urribarri, A. Ferrer and A. Colina, “Leaf Protein Concentrates from Ammonia Treated Dwarf Elephantgrass (Pennisetum purpureum [Schum.] cv. Mott),” Applied Biochemistry and Biotechnology, Vol. 121, No. 3, 2005, pp. 721-730. doi:10.1385/ABAB:122:1-3:0721

[19]   S. Guilbert, M. Morel, N. Gontard and B. Cuq, “Protein- Based Plastics as Smart Green Materials,” In: J. J. Bozell and M. K. Patel, Eds., Feedstocks for the Future, ACS Symposium Ser., Vol. 921, 2006, pp. 334-350.

[20]   A. Aachary and S. Prapulla, “Xylooligosaccharides (XOS) as an Emerging Prebiotic: Microbial Synthesis, Utilization, Structural Characterization, Bioactive Properties, and Applications,” Comprehensive Reviews in Food Science and Food Safety, Vol. 10, No. 1, 2011, pp. 2-16. doi:10.1111/j.1541-4337.2010.00135.x

[21]   K. Pokusaeva, M. O’Connell-Motherway, A. Zomer, J. Macsharry, G. F. Fitzgerald and D. van Sinderen, “Cellodextrin Utilization by Bifidobacterium Breve UCC2003,” Applied Environmental Microbiology, Vol.77, No. 5, 2011, pp. 1681-1690.

[22]   W. W. Hanna, “Method of Reproduction in Napiergrass and in the 3X and 6X Alloploid Hybrids with Pearl Millet,” Crop Science, Vol. 21, No. 1, 1981, pp. 123-126. doi:10.2135/cropsci1981.0011183X002100010033x

[23]   P. P. Jauhar, “Cytogenetics and Breeding of Pearl Millet and Related Species,” Alan R. Liss, Inc., New York, 1981.

[24]   A. J. Lowe, W. Thorpe, A. Teale and J. Hanson, “Characterisation of Germplasm Accessions of Napier Grass (Pennisetum purpureum and P. purpureum × P. glaucum Hybrids) and Comparison with Farm Clones using RAPD,” Genetic Resources and Crop Evoluion, Vol. 50, No. 2, 2003, pp. 121-132. doi:10.1023/A:1022915009380

[25]   K. Harris, W. Anderson, and R. Malik, “Genetic Relationships among Napiergrass (Pennisetum purpureum Schum.) Nursery Accessions using AFLP Markers,” Plant Genetic Resources, Vol. 8, No. 1, 2009, pp. 63-70. doi:10.1017/S1479262109990165

[26]   A. P. Bhandari, D. H. Sukanya, and C. R. Ramesh, “Application of Isozyme Data in Fingerprinting Napier Grass (Pennisetum purpureum Schum.) for Germplasm Management,” Genetic Resources and Crop Evolution, Vol. 53, No. 2, 2006, pp. 253-264. doi:10.1007/s10722-004-6120-2

[27]   A. L. S. Azevedo, P. P. Costa, J. C. Machado, M. A. Machado, A. V. Pereira and F. J. da Silva Lédo, “Cross Species Amplification of Pennisetum glaucum Microsatellite Markers in Pennisetum purpureum and Genetic Diversity of Napiergrass Accessions,” Crop Science, Vol. 52, No. 4, 2012, pp. 1776-1785. doi:10.2135/cropsci2011.09.0480

[28]   G. W. Burton, “Registration of ‘Merkeron’ Napiergrass,” Crop Science, Vol. 29, No. 5, 1989, p. 1327. doi:10.2135/cropsci1989.0011183X002900050050x

[29]   R. W. Jessup, B. L. Burson, G. B. Burow, Y. W. Wang, C. Chang, Z. Li, A. H. Paterson, and M. A. Hussey, “Disomic Inheritance, Suppressed Recombination, and Allelic Interactions Govern Apospory in Buffelgrass as Revealed by Genome Mapping,” Crop Science, Vol. 42, No. 5, 2002, pp. 1688-1694. doi:10.2135/cropsci2002.1688

[30]   SSR Locator: Simple Sequence Repeat Locator. http://www.ufpel.edu.br/faem/fitotecnia/fitomelhoramento/faleconosco.html

[31]   S. M. Aljanabi and I. Martinez, “Universal and Rapid Salt-Extraction of High Quality Genomic DNA for PCR- Based Techniques,” Nucleic Acids Research, Vol. 25, No. 22, 1997, pp. 4692-4693.

[32]   D. Wang, J. Shi, S. R. Carlson, P. B. Cregan, R. W. Ward, and B. W. Diers, “A Low-Cost, High-Throughput Polyacrylamide Gel Electrophoresis System for Genotyping with Microsatellite DNA Markers,” Crop Science, Vol. 43, No. 5, 2003, pp. 1828-1832. doi:10.2135/cropsci2003.1828

[33]   S. Rodriguez, G. Visedo and C. Zapata, “Detection of Errors in Dinucleotide Repeats Typing by Nondenaturing Electrophoresis,” Electrophoresis, Vol. 22, No. 13, 2001, pp. 2656-2664. doi:10.1002/1522-2683(200108)22:13<2656::AID-ELPS2656>3.0.CO;2-6

[34]   G. W. Burton and J. B. Powell, “Pearl Millet Breeding and Cytogenetics,” Advances in Agronomy, Vol. 20, No. 1, 1968, pp. 49-69. doi:10.1016/S0065-2113(08)60854-8

[35]   B. Gonzalez and W. W. Hanna, “Morphological and Fertility Responses in Isogenic Triploid and Hexaploid Pearl Millet × Napiergrass Hybrids,” Journal of Heredity, Vol. 75, No. 4, 1984, pp. 317-318.

[36]   P. P. Jauhar and W. W. Hanna, “Cytogenetics and Genetics of Pearl Millet,” Advances in Agronomy, Vol. 64, No. 1, 1998, pp. 2-21. doi:10.1016/S0065-2113(08)60501-5

[37]   S. Barbosa, L. C. Davide and A. V. Pereira, “Cytogenetics of Pennisetum purpureum Schumack × Pennisetum glaucum L. Hybrids and their Parents,” Ciência Agrotecnologia, Vol. 27, No. 1, 2003, pp. 26-35. doi:10.1590/S1413-70542003000100003

[38]   E. Martel, D. De Nay, S. Siljak-Yakovlev, S. Brown and A. Sarr, “Genome Size Variation and Basic Chromosome Number in Pearl Millet and Fourteen Related Pennisetum Species,” Journal of Heredity, Vol. 88, No. 2, 1997, pp. 139-143. doi:10.1093/oxfordjournals.jhered.a023072

[39]   V. H. Techio, L. C. Davide, A Cagliari, S. Barbosa and A. V. Pereira, “Karyotypic Asymmetry of both Wild and Cultivated Species of Pennisetum,” Bragantia, Vol. 69, No. 2, 2010, pp. 273-279. doi:10.1590/S0006-87052010000200003

[40]   Y. B. Xu, “Molecular Plant Breeding,” Centre for Agricultural Bioscience International, Cambridge, 2010.

 
 
Top