NS  Vol.5 No.5 , May 2013
Somaclonal variations as a mean for obtaining regenerants with different growth rates in poplar (Populus × berolinensis Dipp.)
Abstract: Adventive regenerants of Populus × berolinensis Dipp. were obtained on 1/2 MS salts with sucrose, vitamins, BA, TDZ and NAA using stem, petiole and leaf explants. They differed from each other in plantlet dimensions. More than 50 clones were produced from initial regenerants by excision and rooting of apexes and lateral shoots. Differences in stem length and thickness were observed between 200 field plants produced from in vitro plantlets. Differences in stem length were conditioned mainly due to different number of internodes and not by internodes’ lengths. Plants grown from cuttings excised from highest and smallest plants retained the abilities of mother plants to grow with different rates. It is concluded that somaclonal variability can be used for selection of fast growing poplar plants which are necessary for industrial plantations. These plants can be used for this purpose without the limitations existing for transgenic plants.
Cite this paper: Gamburg, K. and Voinikov, V. (2013) Somaclonal variations as a mean for obtaining regenerants with different growth rates in poplar (Populus × berolinensis Dipp.). Natural Science, 5, 599-607. doi: 10.4236/ns.2013.55075.

[1]   Murashige, T. and Skoog, F. (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiological Plant, 15, 473-497. doi:10.1111/j.1399-3054.1962.tb08052.x

[2]   De Block, M. (1990) Factors influencing the tissue culture and the Agrobacterium tumefaciens-mediated transformation of hybrid aspen and poplar clones. Plant Physiology, 93, 1110-1116. doi:10.1104/pp.93.3.1110

[3]   Bajaj, Y.P.S. (1986) Biotechnology of tree improvement for rapid propagation and biomass energy production. In: Bajaj, Y.P.S., Ed., Biotechnology in Agriculture and Forestry 1. Trees, Springer Verlag, Berlin, Heidelberg, 1-23.

[4]   Ragauskas, A.J., Williams, C.K., Davison, B.H, Britovsek, G., Cairney, J., et al. (2006) The path forward for biofuels and biomaterials. Science, 311, 484-489. doi:10.1126/science.1114736

[5]   Simmons, B.A. (2012) Bioenergy from plants and plant residues. doi:10.1016/B978-0-12-381466-1.00031-6

[6]   Eriksson, M.E., Israelsson, M., Olsson O. and Moritz, T. (2000) Increased gibberellin biosynthesis in transgenic trees promotes growth, biomass production and xylem fiber length. Nature Biotechnology, 18, 784-788. doi:10.1038/77355

[7]   Shani, Z., Dekel, M., Tsabary, G., Goren, R. and Shoseyov, O. (2004) Growth enhancement of transgenic poplar plants by overexpression of Arabidopsis thaliana endo1,4-β-glucanase (cel1). Molecular Breeding, 14, 321-330. doi:10.1023/B:MOLB.0000049213.15952.8a

[8]   Boudet, A.M., Goffner, D., Marque, C., Teulieres, C. and Grima-Pettenati, J. (1998) Genetic manipulation of lignin profiles: A realistic challenge towards the qualitative improvement of plant biomass. Ag Biotech News and Information, 10, 295N-304N.

[9]   Hu, W.J., Harding, S.A., Lung, J., Popko, J.L., Ralph, J., Stokke, D.D., Tsai, C.J. and Chiang, V.L. (1999) Repression of lignin biosynthesis promotes cellulose accumulation and growth in transgenic trees. Nature Biotechnology, 17, 808-812. doi:10.1038/11758

[10]   Pilate, G., Guiney, E., Holt, K., Petit-Conil, M., Lapierre, C., et al. (2002) Field and pulping performance of transgenic trees with altered lignification. Nature Biotechnology, 20, 607-612. doi:10.1038/nbt0602-607

[11]   Sepanen, S.K., Syrjala, L., Weissenberg, K.V., Teeri, T.H., Paajanen, I. and Pappinen, A. (2004) Antifungal activity of stilbenes and in vitro bioassays and in transgenic Populus expressing a gene encoding pinosylvin synthase. Plant Cell Reports, 22, 584-593. doi:10.1007/s00299-003-0728-0

[12]   Jansson, S. and Douglas C.J. (2007) Populus: A model system for plant biology. Annual Review of Plant Biology, 58, 435-458. doi:10.1146/annurev.arplant.58.032806.103956

[13] Poptr1/Poptr1.home.html

[14]   Bradshaw, H.D., Ceulemans, R., Davis, J. and Stettler, R. (2000) Emerging model system in plant biology: Poplar (Populus) as model forest tree. Journal of Plant Growth Regulation, 19, 306-313. doi:10.1007/s003440000030

[15]   Mann, C.C. and Plummer M. L. (2002) Forest Biotech Edges out of the Lab. Science, 295, 1626-1629. doi:10.1126/science.295.5560.1626

[16]   Larkin, P.J. and Scowcroft, W.R. (1981) Somaclonal variation—A novel source of variability from cell cultures for plant improvement. Theoretical and Applied Genetics, 60, 197-214. doi:10.1007/BF02342540

[17]   Huang, Y., Karnovsky, D.F. and Nauer, C.G. (1993) Applications of biotechnology and molecular genetics to tree improvement. Journal of Arboricilture, 19, 84-98.

[18]   Karp, A. (1995) Somaclonal variation as a tool for crop improvement. Euphytica, 85, 295-302. doi:10.1007/BF00023959

[19]   Chalupa, V. (1974) Control of shoot formation and production of trees from poplar callus. Biologia Plantarum, 16, 316-320. doi:10.1007/BF02921246

[20]   Cheema, O.S. (1989) Somatic embryogenesis and plant regeneration from cell suspension and tissue cultures of mature Himalayan poplar (Populus ciliata). Plant Cell Reports, 8, 124-127. doi:10.1007/BF00716855

[21]   Coleman, G.D. and Ernst, S.G. (1989) In vitro shoot regeneration of Populus deltoids: Effect of cytokinin and genotype. Plant Cell Reports, 8, 459-462. doi:10.1007/BF00269048

[22]   Douglas, G.C. (1985) Formation of adventitious buds in stem internodes of Populus hybrid TT32 cultured in vitro: Effects of sucrose, zeatin, IAA and ABA. Journal of Plant Physiology, 121, 225-231. doi:10.1016/S0176-1617(85)80056-0

[23]   No?l, N., Leplé, J.C. and Pilate, G. (2002) Optimization of in vitro micropropagation and regeneration for Populus × interamericana and Populus × euramericana hybrids (P. deltoids, P. trichocarpa and P. nigra). Plant Cell Reports, 20, 1150-1155. doi:10.1007/s00299-002-0465-9

[24]   Russell, J.A. and McCown, B.H. (1988) Recovery of plants from leaf protoplasts of hybrid-poplar and aspen clones. Plant Cell Reports, 7, 59-62. doi:10.1007/BF00272979

[25]   Skvortsov, A.K. (2010) Systematic conspectus of genus Populus in East Europe, Nord and Middle Asia. Bulleten Glavnogo Botanicheskogo Sada, 196, 62-73.

[26]   Huetteman, C.A. and Preece, J.E. (1993) Thidiazuron: A potent cytokinin for woody plant tissue culture. Plant Cell Tissue Organ Culture, 33, 105-119. doi:10.1007/BF01983223

[27]   Tzfira, T., Vinocur, B., Altman, A. and Vainstein A. (1997) rol-Transgenic Populus tremula: Root development, rootborne bud regeneration and in vitro propagation efficiency. Trees—Structure and Function, 12, 464-471.

[28]   Israelsson, M., Eriksson, M.E., Hertzberg, M., Aspeborg, H., Nilson, P. and Moritz, T. (2003) Changes in gene expression in the wood-forming tissue of transgenic hybrid aspen with increased secondary growth. Plant Molecular Biology, 52, 893-903. doi:10.1023/A:1025097410445

[29]   Serres, R., Ostry, M., McCown, B. and Skilling, D. (1991) Somaclonal variation in Populus hybrids regenerated from protoplast culture. In: Ahuja, M.R., Ed., Woody Plant Biotechnology, Plenum Press. New York, 59-61. doi:10.1007/978-1-4684-7932-4_7

[30]   Jing, Z.P., Gallardo, F., Pascual, M.B., Sampalo, R., Romero, J., Navarra de, A.T. and Canovas, F.M. (2004) Improved growth in a field trial of transgenic hybrid poplar overexpressing glutamine synthetase. New Phytology, 164, 137-145. doi:10.1111/j.1469-8137.2004.01173.x

[31]   Tuominen, H., Sitbon, F., Jacobsson, C., Sandberg, G., Olsson O. and Sundberg, B. (1995) Altered growth and wood characteristics in transgenic hybrid aspen expressing the Agrobacterium tumefaciens T-DNA inoleaceticacid biosynthetic genes. Plant Physiology, 109, 11791189.

[32]   Debergh, P.C. and Read, P.E. (1991) Micropropagation. In: Debergh, P.C. and Zimmerman, R.H., Eds., Micropropagation. Technology and Application, Kluwer Academic Publishers, Dordrecht, 1-14.