GSC  Vol.3 No.2 , May 2013
n-Dodecylbenzene Sulfonic Acid (DBSA) as a Novel Brønsted Acid Catalyst for the Synthesis of Bis(indolyl)methanes and Bis(4-hydroxycoumarin-3-yl)methanes in Water
ABSTRACT
n-Dodecylbenzene sulfonic acid (DBSA) as a novel, biodegradable, and efficient Br?nsted acid catalyst used for the reaction of indoles/4-hydroxy coumarin with aldehydes to obtain a bis(indolyl)methanes/bis(4-hydroxycoumarin-3-yl)methanes, respectively. The catalyst exhibited remarkable activity, and tolerated a wide variety of functional groups providing the desired bis(indolyl)methanes and bis(4-hydroxycoumarin-3-yl)methanes in good to excellent yield (70%-96%) in water.

Cite this paper
B. Pawar, V. Shinde and A. Chaskar, "n-Dodecylbenzene Sulfonic Acid (DBSA) as a Novel Brønsted Acid Catalyst for the Synthesis of Bis(indolyl)methanes and Bis(4-hydroxycoumarin-3-yl)methanes in Water," Green and Sustainable Chemistry, Vol. 3 No. 2, 2013, pp. 56-60. doi: 10.4236/gsc.2013.32010.
References
[1]   J. Hinman, H. Hoeksema, E. L. Caron and W. G. Jackson, “The Partial Structure of Novobiocin (Streptonivicin),” Journal of the American Chemical Society, Vol. 78, No. 5, 1956, pp. 1072-1074. doi:10.1021/ja01586a055

[2]   R. O’kenne and R. D. Thomes, “Coumarins: Biology Application and Modes of Action,” Wiley & Sons, Chichester, 1997.

[3]   M. Zahradnik, “The Production and Application of Fluo- rescent Brightening Agents,” Wiley & Sons, Chichester, 1982.

[4]   M. A. Stahmann, I. Miyoshi and L. K. Paul, “3-Substituted 4-Hydroxycoumarin and Process of Making it,” US Patent 2427578, 1947.

[5]   R. D. H. Murray, J. Mendez and S. A. Brown, “The Natural Coumarins,” Wiley, Chichester, 1982.

[6]   R. J. Sundberg, “The Chemistry of Indoles,” Academic, New York, 1970.

[7]   M. Lounasmaa and A. Tolvanen, “Simple Indole Alkaloids and Those with a Nonrearranged Monoterpenoid Unit,” Natural Product Reports, Vol. 17, 2000, pp. 175-191. doi:10.1039/a809402k

[8]   S. Hibino and T. Choshi, “Simple Indole Alkaloids and Those with a Nonrearranged Mono Terpenoid Unit,” Natural Product Reports, Vol. 18, 2001, pp. 66-87. doi:10.1039/b004055j

[9]   T. R. Garbe, M. Kobayashi, N. Shimizu, N. Takesue, M. Ozawa and H. Yukawa, “Indolyl Carboxylic Acids by Condensation of Indoles with α-Keto Acids,” Journal of Natural Products, Vol. 63, No. 5, 2000, pp. 596-598. doi:10.1021/np990517s

[10]   R. Bell, S. Carmeli and N. Sar, “Vibrindole A, a Metabolite of the Marine Bacterium, Vibrio Parahaemolyticus, Isolated from the Toxic Mucus of the Boxfish Ostracion Cubicus,” Journal of Natural Products, Vol. 57, No. 11, 1994, pp. 1587-1590. doi:10.1021/np50113a022

[11]   T. Osawa and M. Namiki, “Structure Elucidation of Streptindole, a Novel Genotoxic Metabolite Isolated from Intestinal Bacteria,” Tetrahedron Letters, Vol. 24, No. 43, 1983, pp. 4719-4722. doi:10.1016/S0040-4039(00)86237-1

[12]   X. Guinchard, Y. Vallee and J.-N. Denis, “Total Synthesis of Marine Sponge Bis(indole) Alkaloids of the Topsentin Class,” The Journal of Organic Chemistry, Vol. 72, No. 10, 2007, pp. 3972-3975. doi:10.1021/jo070286r

[13]   R. Martinez, A. Espinosa, A. Tarraga and P. Molina, “Bis(indolyl)methane Derivatives as Highly Selective Colourimetric and Ratiometric Fluorescent Molecular Chemosensors for Cu2+ Cations,” Tetrahedron, Vol. 64, No. 9, 2008, pp. 2184-2191. doi:10.1016/j.tet.2007.12.025

[14]   S. Kobayashi, M. Araki and M. Yasuda, “One-Pot Synthesis of β-Amino Esters from Aldehydes Using Lanthanide Triflate as a Catalyst,” Tetrahedron Letters, Vol. 36, No. 32, 1995, pp. 5773-5776.

[15]   J. S. Yadav, B. V. Subba Reddy, C. V. S. R. Murthy, G. Mahesh Kumar and C. Madan, “Lithium Perchlorate Catalyzed Reactions of Indoles: An Expeditious Synthesis of Bis(indolyl)methanes,” Synthesis, Vol. 5, 2001, pp. 783-787. doi:10.1055/s-2001-12777

[16]   S. A. Sadaphal, K. F. Shelke, S. S. Sonar and M. S. Shingare, “Ionic Liquid Promoted Synthesis of Bis(indolyl) Methanes,” Central European Journal of Chemistry, Vol. 6, No. 4, 2008, pp. 622-626. doi:10.2478/s11532-008-0069-5

[17]   H. Hagiwara, M. Sekifuji, T. Hoshi, K. Qiao and C. Yokoyama, “Synthesis of Bis(indolyl)methanes Catalyzed by Acidic Ionic Liquid Immobilized on Silica (ILIS),” Synlett, Vol. 8, 2007, pp. 13200-1322. doi:10.1055/s-2007-977453

[18]   S. A. Sadaphal, S. S. Sonar, M. N. Ware and M. S. Shingare, “Cellulose Sulfuric Acid: Reusable Catalyst for Solvent-Free Synthesis of Bis(indolyl)methanes at Room Temperature,” Green Chemistry Letters and Reviews, Vol. 1, 2008, pp. 191-196.

[19]   S.-R. Sheng, Q.-Y. Wang, Y. Ding, X.-L. Liu and M.-Z. Cai, “Synthesis of Bis(indolyl)methanes Using Recyclable PEG-Supported Sulfonic Acid as Catalyst,” Catalysis Letters, Vol. 128, 2009, pp. 418-422.

[20]   S. Qadir, A. A. Dar and K. Z. Khan, “Synthesis of Biscoumarins from 4-Hydroxycoumarin and Aromatic Aldehydes—A Comparative Assessment of Percentage Yield under Thermal and Microwave-Assisted Conditions,” Synthetic Communications, Vol. 38, No. 20, 2008, pp. 3490-3499. doi:10.1080/00397910802162942

[21]   M. Kidwai, V. Bansal, P. Mothsra, S. Saxena, R. K. Somvanshi, S. Dey and T. P. Singh, “Molecular Iodine: A Versatile Catalyst for the Synthesis of Bis(4-hydroxy-coumarin) Methanes in Water,” Journal of Molecular Catalysis A: Chemical, Vol. 268, 2007, pp. 76-81.

[22]   J. M. Khurana and S. Kumar, “Tetrabutylammonium Bromide (TBAB): A Neutral and Efficient Catalyst for the Synthesis of Biscoumarin and 3,4-Dihydropyrano[c] chromene Derivatives in Water and Solvent-Free Conditions,” Tetrahedron Letters, Vol. 50, No. 28, 2009, pp. 4125-4127. doi:10.1016/j.tetlet.2009.04.125

[23]   H. Mehrabi and H. Abusaidi, “Synthesis of Biscoumarin and 3,4-Dihydropyrano[c]chromene Derivatives Catalysed by Sodium Dodecyl Sulfate (SDS) in Neat Water,” Journal of the Iranian Chemical Society, Vol. 7, 2010, pp. 890-894.

[24]   D. Talukdar and A. J. Thakur, “A Green Synthesis of Symmetrical Bis(indol-3-yl)methanes Using Phosphate-Impregnated Titania Catalyst under Solvent Free Grinding Conditions,” Green Chemistry Letters and Reviews, Vol. 6, 2013, pp. 55-61.

[25]   R. Surasani, D. Kalita and K. B. Chandrasekhar, “Indion Ina 225H Resin as a Novel, Selective, Recyclable, Eco-Benign Heterogeneous Catalyst for the Synthesis of Bis(indolyl)methanes,” Green Chemistry Letters and Reviews, Vol. 6, 2013, pp. 113-122.

[26]   V. Padalkar, K. Phatangare, S. Takale, R. Pisal and A. Chaskar, “Silica Supported Sodium Hydrogen Sulfate and Indion 190 Resin: An Efficient and Heterogeneous Catalyst for Facile Synthesis of Bis-(4-hydroxycoumarin-3-yl) Methanes,” Journal of Saudi Chemical Society, 2012. doi:10.1016/j.jscs.2011.12.015

[27]   T. Dwars, E. Paetzold and G. Oehme, “Reactions in Micellar Systems,” Angewandte Chemie International Edition, Vol. 44, 2005, pp. 7174-7179.

[28]   F. M. Menger and C. E. Portnoy, “Chemistry of Reactions Proceeding Inside Molecular Aggregates,” Journal of the American Chemical Society, Vol. 89, No. 18, 1967, pp. 4698-4703. doi:10.1021/ja00994a023

[29]   J. H. Fendler and E. J. Fendler, “Catalysis in Micellar and Micromolecular System,” Academic Press, New York, 1975.

[30]   S. Tascioglu, “Micellar Solutions as Reaction Media,” Tetrahedron, Vol. 52, No. 34, 1996, pp. 11113-11152. doi:10.1016/0040-4020(96)00669-2

[31]   A. Chaskar, V. Padalkar, K. Phatangare, B. Langi and C. Shah, “Miceller-Mediated Phosphomolybdic Acid: Highly Effective Reusable Catalyst for Synthesis of Quinoline and Its Derivatives,” Synthetic Communications, Vol. 40, No. 15, 2010, pp. 2336-2340. doi:10.1080/00397910903245141

[32]   B. Pawar, V. Padalkar, K. Phatangare, S. Nirmalkar and A. Chaskar, “Miceller Media Accelerated Baylis-Hillman Reaction,” Catalysis Science & Technology, Vol. 1, No. 9, 2011, pp. 1641-1644. doi:10.1039/c1cy00278c

[33]   K. Phatangare, V. Padalkar, K. Murugan and A. Chaskar, “Bronsted Acid-Surfactant (BAS) Catalysed Cyclotrimerization of Aryl Methyl Ketone,” Current Chemistry Letters, Vol. 1, 2012, pp. 133-138.

 
 
Top