ANP  Vol.2 No.2 , May 2013
Photo-Induced DNA-Dependent Conformational Changes in Silver Nanoparticles
ABSTRACT

The goal of the present investigation is to study the interaction of AgNPs with thymus DNA by traditional and original spectra-photometric and thermo-dynamic methods and approaches in darkness and under photo-irradiation. 1) At the interaction of DNA with nano-particles hypsochromic shift of 6 nm and hypochromic effect of 20% of AgNPs absorption band are observed. 2) At photo-irradiation (λ = 436 nm or full spectrum of visible band) of AgNPs-DNA complexes absorption spectra band width is changed from 140 nm to 360 nm at half-height. Besides, isosbestic point is observed. 3) Kinetic study of photo-diffusion has made it possible to determine desorption rate constant and desorption reaction activation energy that are equal respectively to kd @ 9 10-5 s-1, Ed @ 80 kJ/M Ag0 for AgNPs bound with DNA. It is shown that AgNPs represent liquid drops which moisture the DNA surface at interaction. At photo-irradiation of AgNPs-DNA complex DNA dependant conformational transition takes place due to fast and intensive heating.


Cite this paper
Bregadze, V. , Melikishvili, Z. and Giorgadze, T. (2013) Photo-Induced DNA-Dependent Conformational Changes in Silver Nanoparticles. Advances in Nanoparticles, 2, 176-181. doi: 10.4236/anp.2013.22026.
References
[1]   V. G. Bregadze, Z. G. Melikishvili, T. G. Giorgadze, J. R. Monaselidze, Z. V. Jaliashvili and T. B. Khuskivadze, “Point Defects in Double Helix Induced by Interaction of Silver Nanoparticles with DNA,” 2012. http://arxiv.org/ftp/arxiv/papers/1206/1206.4816.pdf

[2]   G. Natile and F. Cannito, “Platinum Drugs, Nucleotides and DNA: The Role of Interligand Interactions,” In: N. Hadjiliadis and E. Sletten, Eds., Metale Complex-DNA Interactious, Blackwell Publishing Ltd., Chichester, 2009, pp. 135-173. doi:10.1002/9781444312089.ch5

[3]   V. Morchan and A. Grandas, “Platinated Oligonucleotides: Synthesis and Applications for the Control of Gene Expression,” In: N. Hadjiliadis and E. Sletten, Eds., Metale Complex-DNA Interactious, Blackwell Publishing Ltd., Chichester, 2009, pp. 273-300. doi:10.1002/9781444312089.ch9

[4]   V. G. Bregadze, I. G. Khutsishvili, J. G. Chkhaberidze and K. Sologashvili, “DNA as a Mediator for Proton, Electron and Energy Transfer Induced by Metal Ions,” Inorganica Chimica Acta, Vol. 339, 2002, pp. 145-159. doi:10.1016/S0020-1693(02)01037-X

[5]   T. Niidome, A. Shiotani, Y. Akiyame, A. Ohga, K. Nose, D. Pissuwan and Y. Niidome, “Theragnostic Approaches Using Gold Nanorods and near Infrared Ligh,” Yakugaku Zasshi, Vol. 130, No. 12, 2010, pp. 1671-1667. doi:10.1248/yakushi.130.1671

[6]   N. Khlebtsov and L. Dykman, “Biodistribution and Toxicity of Engineered Gold Nanoparticles: A Review of in Vitro and in Vivo Studies,” Chemical Society Reviews, Vol. 40, No. 3, 2011, pp. 1647-1671. doi:10.1039/c0cs00018c

[7]   B. S. Sekhon and S. R. Kamboj, “Inorganic Nanomedicine—Part 2,” Nanomedicine, Vol. 6, No. 5, 2010, pp. 612-618. doi:10.1016/j.nano.2010.04.003

[8]   F. Ratto, P. Matteini, S. Centi, F. Rossi and R. Pini, “Gold Nanorods as New Nanochromophores for Photothermal Therapies,” Journal of Biophotonics, Vol. 4, No. 1-2, 2011, pp. 64-73. doi:10.1002/jbio.201000002

[9]   D. Pissuwan, S. Valenzuela and M. B. Cortie, “Prospects for gold nanorod particles in diagnostic and therapeutic applications,” Biotechnol. Genet. Eng. Rev., Vol. 25, No. 1, 2008, pp. 93-112. doi:10.5661/bger-25-113

[10]   J. R. Whitney, S. Sarkar, J. Zhang, T. Do, T. Young, M. K. Manson, T. A. Campbell, A. A. Puretzky, C. M. Rouleau, K. L. More, D. B. Geohegan, C. G. Rylander, H. C. Dorm and M. N. Rylander, “Single Walled Carbon Nanohorns as Photothermal Cancer Agents,” Lasers in Surgery and Medicine, Vol. 43, No. 1, 2011, pp. 43-51. doi:10.1002/lsm.21025

[11]   J. W. Fisher, S. Sarkar, C. F. Buchanan, C. S. Szot, J. Whitney, H. C. Hatcher, S. V. Torti, C. G. Rylander and M. N. Rylander, “Photothermal Response of Human and Murine Cancer Cells to Multiwalled Carbon Nanotubes after Laser Irradiation,” Cancer Research, Vol. 70, No. 23, 2010, pp. 9855-9864.

[12]   S. Yanari and F. A. Bovey, “Interpretation of Ultraviolet Spectral Changes of Proteins,” Journal of Biological Chemistry, Vol. 235, No. 10, 1960, pp. 2818-2826.

[13]   S. Nir, S. Abams, and R. Rein, “Polarizability Calculations on Water, Hydrogen, Oxygen, and Carbon Dioxide,” Journal of Chemical Physics, Vol. 59, No. 6, 1973, pp. 3341-3355. doi:10.1063/1.1680478

[14]   The Effect of Size on Optical Properties: Data of Firm NanoComposix, Silver Nanoparticles: Optical Properties. http://nanocomposix.com/kb/silver/optical-properties

[15]   The Effect of Aggregation on Optical Properties: Data of Firm NanoComposix, Silver Nanoparticles: Optical Properties. http://nanocomposix.com/kb/silver/optical-properties

[16]   M. V. Volkenshtein, “Molecular Biophysics,” Nauka, Moscow, 1975.

[17]   A. S. Davidov, “Theory of Molecular Excitons,” McGrow -Hill Book Company, New York, 1962.

[18]   I. Tinoco, Jr., A. Halpern and W. T. Simpson, “The Relation between Conformation and Light Absorbtion in Polypeptides and Proteins,” In: M. A. Stahmann, Ed., Polyaminoacids, Polypeptides and Proteins, University of Wisconsin Press, Madison, 1962, pp. 147-160.

[19]   K. Higasi, H. Baba and A. Rembaum, “Quantum Organic Chemistry,” Nterscience Publishers, New York, 1965.

[20]   V. G. Bregadze, Z. G. Melikishvili and T. G. Giorgadze, “Conformational Transitions in Silver Nanoparticles: DNA and Photoirradiation,” 2012. http://arxiv.org/ftp/arxiv/papers/1206/1206.4815.pdf

[21]   Chemical Encyclopaedia (in Russian), “Clusters,” Vol. 2, Sovetskaia Entsiklopedia, Moscow, 1990.

[22]   V. G. Bregadze, “Metal Ion Interactions with DNA: Considerations on Structure, Stability, and Effects from Metal Ion Binding” In: A. Sigel and H. Sigel, Eds., Metal Ions in Biological Systems, Vol. 32, Marcel Dekker, New York, 1996, pp. 419-451.

[23]   F. X. Wilhelm and M. Daune, “Interactions des Ions Métalliques Avec le DNA. III. Stabilité et Configuration des complexes Ag-DNA,” Biopolymers, Vol. 8, No. 1, 1969, pp. 121-137. doi:10.1002/bip.1969.360080110

 
 
Top