ANP  Vol.2 No.2 , May 2013
Preparation and Characterization of Silica and Clay-Silica Core-Shell Nanoparticles Using Sol-Gel Method

Silica and montmorillonite-supported silica nanoparticles were prepared via an acid one step sol-gel process. The synthesized solids were characterized using XRD, FTIR, TEM and N2 adsorption. The effect of preparing temperatures on the structure and properties of the silica nanoparticles were studied. The results show that the increase of annealing temperature from 25 to 200, don’t change amorphous state of silica. While for montmorillonite-supported silica the clay platelets are delaminated during the sol-gel process. TEM results showed that the average particle size of silica is increased by increasing temperature due to the particle sintering and the clay-silica nanoparticles possessed core–shell morphology with diameter of 29 nm. The surface area measurements showed that by increasing annealing temperature the surface area was decreased due to aggregation of particle. The clay-silica sample showed lower average pore width than that of the silica prepared at 200 indicating that it has a macropores structure. The adsorption efficiency of the prepared samples was tested by adsorption of protoporphyrin IX. The highest adsorption efficiency was found for SiO2 prepared at 200. Temkin model describe the equilibrium of adsorption of protoporphyrin IX on caly-silica nanoparticles under different conditions.

Cite this paper
Sadek, O. , Reda, S. and Al-Bilali, R. (2013) Preparation and Characterization of Silica and Clay-Silica Core-Shell Nanoparticles Using Sol-Gel Method. Advances in Nanoparticles, 2, 165-175. doi: 10.4236/anp.2013.22025.
[1]   R. Vacassy, R. J. Flatt, H. Hofmann, K. S. Choi and R. K. Singh, “Synthesis of Microporous Silica Spheres,” Journal of Colloid and Interface Science, Vol. 227, No. 2, 2000, pp. 302-315. doi:10.1006/jcis.2000.6860

[2]   F. Iskandar and O. K. Mikrajuddin, “In Situ Production of Spherical Silica Particles Containing Self-Organized Me sopores,” Nano Letters, Vol. 1, No. 5, 2001, pp. 231-234. doi:10.1021/nl0155227

[3]   G. De, B. Karmakar and D. Ganguli, “Hydrolysis-Condensation Reactions of TEOS in the Presence of Acetic Acid Leading to the Generation of Glass-Likesilica Microspheres in Solution at Room Temperature,” Journal of Materials Chemistry, Vol. 10, 2000, pp. 2289-2293. doi:10.1039/b003221m

[4]   J. Zhang, Z. Liu, B. Han, Z. Li, G. Yang, J. Li and J. Chen, “Preparation of Silica and TiO2-SiO2 Core-Shell Nanoparticles in Water-in-Oil Microemulsion Using Compressed CO2 as Reactant and Antisolvent,” Journal of Supercritical Fluids, Vol. 36, No. 3, 2006, pp. 194-201. doi:10.1016/j.supflu.2005.06.002

[5]   A. Palaniappan, J. Zhang, X. Su and F. E. H. Tay, “Preparation of Mesoporous Silica Films Using Sol-Gel Process and Argon Plasma Treatment,” Chemical Physics Letters, Vol. 395, No. 1-3, 2004, pp. 70-74. doi:10.1016/j.cplett.2004.07.060

[6]   C. Pijolat, J.P. Viricelle, G. Tournier and P. Montmeat, “Application of Membranes and Filtering Films for Gas Sensors Improvements,” Thin Solid Films, Vol. 490, No. 1, 2005, pp. 7-16. doi:10.1016/j.tsf.2005.04.017

[7]   M. H. Jo, J. K. Hong, H. H. Park, J. J. Kim, S. H. Hyun and S. Y. Choi, “Application of SiO2 Aerogel Film with Low Dielectric Constant to Intermetal Dielectrics,” Thin Solid Films, Vol. 308-309, 1997, pp. 490-494. doi:10.1016/S0040-6090(97)00437-9

[8]   B. J. O’sullivan, P. K. Hurley, C. Leveagle and J. H. Das, “Si-SiO2 Interface Properties Following Rapid Thermal Processing,” Journal of Applied Physics, Vol. 89, No. 7, 2001, pp. 3811-3821. doi:10.1063/1.1343897

[9]   M. Ritala, K. Kukli, A. Rahtu, P. Risnen, M. Leskel, T. Sajavaara and J. Keinonen, “Atomic Layer Deposition of Oxide Thin Films with Metal Alkoxides as Oxygen Sources,” Science, Vol. 288, No. 5464, 2000, pp. 319-321. doi:10.1126/science.288.5464.319

[10]   S. Tanaka, N. Nishiyama, Y. Oku, Y. Egashira and K. Ueyama, “Nano-Architectural Silica Thin Films with Two-Dimensionally Connected Cagelike Pores Synthesized from Vapor Phase,” Journal of the American Chemical Society, Vol. 126, No. 15, 2004, pp. 4854-4858. doi:10.1021/ja039267z

[11]   H. Yang, N. Coombs, I. Sokolov and G. A. Ozin, “Free Standing and Oriented Mesoporous Silica Films Grown at the Air-Water Interface,” Nature, Vol. 381, No. 6583, 1996, pp. 589-592. doi:10.1038/381589a0

[12]   Q. Liu, J. Zhang, Q. Liu, Z. Zhu and J. Chen, “Sol-Gel Synthesis and Characterization of Silica Film with Two Opposite Structures: Nano-Porous and Protuberant,” Materials Chemistry and Physics, Vol. 114, No. 1, 2009, pp. 309-312. doi:10.1016/j.matchemphys.2008.09.056

[13]   Z. Qian, G. Hu, S. Zhang and M. Yang, “Preparation and Characterization of Montmorillonite-Silica Nanocomposites: A Sol-Gel Approach to Modifying Clay Surfaces,”' Physica B, Vol. 403, No. 18, 2008, pp. 3231-3238. doi:10.1016/j.physb.2008.04.008

[14]   J. Sun, L. Qiao, S. Sun and G. Wang, “Photocatalytic Degradation of Orange G on Nitrogen-Doped TiO2 Catalysts under Visible Light and Sunlight Irradiation,” Journal of Hazardous Materials, Vol. 155, No. 1-2, 2008, pp. 312-319. doi:10.1016/j.jhazmat.2007.11.062

[15]   P. S. Singh, “High Surface Area Nanoporous Amorphous Silica Prepared by Dodecanol Assisted Silica Formate Sol-Gel Approach,” Journal of Colloid and Interface Science, Vol. 325, No. 1, 2008, pp. 207-214. doi:10.1016/j.jcis.2008.05.037

[16]   K. M. S. Meera, R. M. Sankar, A. Murali, S. N. Jaisankar and A. B. Mandal, “Sol-Gel Network Silica/Modified Montmorillonite Clay Hybrid Nanocomposites Hydrophobic Surface Coatings,” Colloids and Surfaces B: Biointerfaces, Vol. 90, 2012, pp. 204-210. doi:10.1016/j.colsurfb.2011.10.018

[17]   S. K. Parida, S. Dash, S. Patel and B. K. Mishra, “Adsorption of Organic Molecules on Silica Surface,” Advances in Colloid and Interface Science, Vol. 121, No. 1-3, 2006, pp. 77-110. doi:10.1016/j.cis.2006.05.028