JBBS  Vol.3 No.2 , May 2013
Effects of Perinatal Undernutrition and Massage Stimulation upon the Ambiguus Nucleus in the Rat Prior to Weaning
Abstract: Undernutrition produces morphological brain alterations and cognitive deficiencies in children of underdeveloped countries. The central nervous system (CNS) alterations mainly interfere with the anatomical organization of areas undergoing a phase of intense postnatal cell proliferation, disrupting plastic processes like learning, memory, and phonation. In the rat pup, prenatal malnutrition interferes with the elaboration of ultrasonic vocalizations (USVs) by poorly understood mechanisms. The neuronal caudal portion of the nucleus ambiguus (Ambc) innervates the laryngeal intrinsic muscles to produce phonation, a basic USV communication system. During postnatal development, enhanced plasticity phenomena play a fundamental role in improving brain function. Thus, the massage stimulation (MS) may accelerate growth and induce neurogenesis in different areas of the brain. The current study analyzed the effects of a daily 10-min MS on the dendritic tree and perikarya measurements of Ambc multipolar motoneurons (Golgi-Cox) of perinatally underfed (U), control (C), control massage-stimulated (CMS), and underfed massage-stimulated (UMS) groups at postnatal days (PDs) 8, 12, and 15. The data indicated that the dendritic scores were reduced (p < 0.05) in both number and density at PD8 and PD15 in the U subjects and that MS increased the values of these parameters (p < 0.05). In addition, MS induced body weight gain in both U and CMS groups, and it enhanced the dendritic density in CMS subjects. These results show that MS during the pre-weaning period restores the plastic properties of the Ambc over the hypoplastic multipolar motoneuron after the alterations caused by perinatal undernutrition.
Cite this paper: D. Lopez-Jimenez, C. Torrero, M. Regalado and M. Salas, "Effects of Perinatal Undernutrition and Massage Stimulation upon the Ambiguus Nucleus in the Rat Prior to Weaning," Journal of Behavioral and Brain Science, Vol. 3 No. 2, 2013, pp. 200-209. doi: 10.4236/jbbs.2013.32021.

[1]   Brouette-Lahlou, F. Godinot and E. Vernet-Maury, “The Mother Rat’s Vomeronasal Organ Is Involved in Detection of Dodecyl Propionate, the Pup’s Preputial Gland Pheromone,” Physiology & Behavior, Vol. 66, No. 3, 1999, pp. 427-436. doi:10.1016/S0031-9384(98)00334-5

[2]   A. S. Fleming, D. H. O’Day and G. W. Kraemer, “Neurobiology of Mother-Infant Interactions: Experience and Central Nervous System Plasticity across Development and Generations,” Neuroscience & Biobehavioral Reviews, Vol. 23, No. 5, 1999, pp. 673-685. doi:10.1016/S0149-7634(99)00011-1

[3]   S. M. Schanberg, V. F. Ingledue, J. Y. Lee, Y. A. Hannun and J. V. Bartolome, “PKC Alpha Mediates Maternal Touch Regulation of Growth-Related Gene Expression in Infant Rats,” Neuropsychopharmacology, Vol. 28, No. 6, 2003, pp. 1026-1030. doi:10.1038/sj.npp.1300125

[4]   S. M. Brudzynski, P. Kehoe and M. Callahan, “Sonographic Structure of Isolation-Induced Ultrasonic Calls of Rat Pups,” Developmental Psychobiology, Vol. 34, No. 3, 1999, pp.195-204.

[5]   F. R. D’Amato, E. Scalera, C. Sarli and A. Moles, “Pup Call, Mothers Rush: Does Maternal Responsiveness Affect the Amount of Ultrasonic Vocalizations in Mouse Pups?” Behavior Genetics, Vol. 35, No. 1, 2005, pp. 103112. doi:10.1007/s10519-004-0860-9

[6]   I. Brachi, D. Santucci and E. Alleva, “Analysis of Ultrasonic Vocalizations Emitted by Infant Rodents,” Current Protocols in Toxicology, Vol. 30No. 12, 2006, pp. 1-14.

[7]   K. M. Harmon, H. C. Cromwell, J. Burgdorf, J. R. Moskal, S. M. Brudzynski, R. A. Kroes and J. Panksepp, “Rats Selectively Bred for Low Levels of 50 kHz Ultrasonic Vocalizations Exhibit Alterations in Early Social Motivation,” Developmental Psychobiology, Vol. 50, No. 4, 2008, pp. 322-331. doi:10.1002/dev.20294

[8]   J. Tonkiss, K. E. Bonnie, J. L. Hudson, P. L. Shultz, P. Duran and J. R. Galler, “Ultrasonic Call Characteristics of Rat Pups Are Altered Following Prenatal Malnutrition,” Developmental Psychobiology, Vol. 43, No. 2, 2003, pp. 90-101. doi:10.1002/dev.10124

[9]   K. Hayakawa, A. Hosokawa, K. Yabusaki and T. Obinata, “Orientation of Smooth Muscle-Derived A10 Cells in Culture by Cyclic Stretching: Relationship between Stress Fiber Rearrangement and Cell Reorientation,” Zoological Science, Vol. 17, No. 5, 2000, pp. 617-624. doi:10.2108/zsj.15.617

[10]   A. Sawczuk and K, M, Mosier, “Neural Control of Tongue Movement with Respect to Respiration and Swallowing,” Critical Reviews in Oral Biology and Medicine, Vol. 12, No. 1, 2001, pp. 18-37. doi:10.1177/10454411010120010101

[11]   T. Riede, “Subglottal Pressure, Tracheal Airflow, and Intrinsic Laryngeal Muscle Activity during Rat Ultrasound Vocalization,” Journal of Neurophysiology, Vol. 106, No. 5, 2011, pp. 2580-2592. doi:10.1152/jn.00478.2011

[12]   J. W. Patrickson, T. E. Smith and S. S. Zhou, “Afferent Projections of the Superior and Recurrent Laryngeal Nerves,” Brain Research, Vol. 539, No. 1, 1991, pp. 169-174.

[13]   P. A. Nunez-Abade, R. Pasaro and A. L. Bianchi, “Study of the Photographical Distribution of Different Populations of Motoneurons within Rat’s Nucleus Ambiguus, by Means of Four Different Fluorochromes,” Neurosciencie Letters, Vol. 135, No. 1, 1992, pp. 103-107. doi:10.1016/0304-3940(92)90146-X

[14]   A. Pascual-Font, I. Hernández-Morato, S. McHanwell, T. Vázquez, E. Maranillo, J. Sañudo, and F. J. ValderramaCanales, “The Central Projections of the Laryngeal Nerves in the Rat,” Journal of Anatomy, Vol. 219, No. 2, 2011, pp. 217-228. doi:10.1111/j.1469-7580.2011.01390.x

[15]   I. H. Pires-de-Mélo, F. Wanderley Dos Reis, L. S. Luz, S. T. Paz, H. J. Silva and S. L. Souza, “Shortand LongTerm Effects of a Neonatal Low-Protein Diet in Rats on the Morphology of the Larynx,” Nutrition, Vol. 25, No. 7-8, 2009, pp. 855-860. doi:10.1016/j.nut.2008.12.015

[16]   M. Salas, “Effects of Early Undernutrition on Dendritic Spines of Cortical Pyramidal Cell in the Rat,” Developmental Neuroscience, Vol. 3, No. 3, 1980, pp. 109-117. doi:10.1159/000112384

[17]   T. C. Breton, F. Lefévre, J. Mairesse, A. Dickes-Coopman, M. Silhol, L. Tapia-Arancibia, J. Lesage and D. Vieau, “Perinatal Undernutrition Modifies Cell Proliferation and Brain-Derived Neurotrophic Factor Levels during Critical Time-Windows for Hypothalamic and Hippocampal Development in the Male Rat,” Journal of Neuroendocrinology, Vol. 21, No. 1, 2009, pp. 40-48. doi:10.1111/j.1365-2826.2008.01806.x

[18]   M. L. Florian and M. L. Nunes, “Effects of Intra-Uterine and Early Extra-Uterine Malnutrition on Seizure Threshold and Hippocampal Morphometry of Pup Rats,” Nutritional Neuroscience, Vol. 13, No. 6, 2010, pp. 265-273. doi:10.1179/147683010X12611460764804

[19]   B. Segura, J. C. Guadarrama, A. L. Gutierrez, H. Merchant, L. Cintra and I. Jiménez, “Effect of Perinatal Food Deficiencies on the Compound Action Potential Evoked in Sensory Nerves of Developing Rats,” Nutritional Neuroscience, Vol. 4, No. 6, 2001, pp. 475-488.

[20]   M. Salas, C. Torrero. L. Rubio and M. Regalado, “Effects of Perinatal Undernutrition on the Development of Neurons in the Rat Insular Cortex,” Nutritional Neuroscience, Vol. 15, No. 5, 2012, pp. 20-25. doi:10.1179/1476830512Y.0000000014

[21]   P. Kehoe, K. Mallison, J. Bronzino and C. M. McCormick, “Effects of Prenatal Protein Malnutrition and Neonatal Stress on CNS Responsiveness,” Brain Research Developmental Brain Research, Vol. 132, No. 1, 2001, pp. 23-31. doi:10.1016/S0165-3806(01)00292-9

[22]   A. L. Fowden and A. J. Forhead, “Endrocrine Mechanisms of Intrauterine Programming,” Reproduction, Vol. 127, No. 5, 2004, pp. 515-526.

[23]   D. Vieau, N. Sebaai, M. Léonhardt, I. Dutriez-Casteloot, O. Molendi-Coste, C. Laborie, C. Breton, S. Deloof and J. Lesage, “HPA Axis Programming by Maternal Undernutrition in the Male Rat Offspring,” Psychoneuroendocrinology, Vol. 32, No. 1, 2007, pp. S16-S20. doi:10.1016/j.psyneuen.2007.03.014

[24]   J. L. Smart, “Maternal Behaviour of Undernourished Mother Rats towards Well Fed and Underfed Young,” Physiology & Behavior, Vol. 16, No. 2, 1976, pp. 147-149. doi:10.1016/0031-9384(76)90298-5

[25]   M. Salas, M. Regalado and C. Torrero, “Recovery of LongTerm Maternal Deficiencies of Neonatally Underfed Rats by Early Sensory Stimulation: Effects of Successive Parturitions,” Nutritional Neuroscience, Vol. 4, No. 4, 2001, pp. 311-322.

[26]   D. Ackerman, “A Natural History of the Senses,” Random House, New York, 1990.

[27]   M. H. S. Lee and D. I. Williams, “Changes in Licking Behaviour of Rat Mother Following Handling of Young,” Animal Behaviour, Vol. 22, No. 3, 1974, pp. 679-681. doi:10.1016/S0003-3472(74)80016-3

[28]   J. R. Alberts, “Hunddling by Rat Pups: Multisensory Control of Contact Behavior,” Journal of Comparative and Physiological Psychology, Vol. 92, No. 2, 1978, pp. 220230.

[29]   E. Arabzadeh, R. S. Petersen and M. E. Diamond, “Encoding of Whisker Vibration by Rat Barrel Cortex Neurons: Implications for Texture Discrimination,” The Journal of Neuroscience, Vol. 23, No. 27, 2003, pp. 9146-9154.

[30]   O. Soriano, M. Regalado, C. Torrero and M. Salas, “Contributions of Undernutrition and Handling to Huddling Development of Rats,” Physiology & Behavior, Vol. 89, No. 4, 2006, pp. 543-551. doi:10.1016/j.physbeh.2006.07.021

[31]   F. Morroni, M. Kitazawa, D. Drago, D. Cheng, R. Medeiros and F. M. La Ferla, “Repeated Physical Training and Environmental Enrichment Induce Neurogenesis and Synaptogenesis Following Neuronal Injury in an Inducible Mouse Model,” Journal of Behavioral and Brain Science, Vol. 1, No. 4, 2011, pp. 199-209. doi:10.4236/jbbs.2011.14027

[32]   A. Guzzetta, S. Baldini, A. Bancale, L. Baroncelli, F. Ciucci, P. Ghirri, E. Putignano, A. Sale, A. Viegi, N. Berardi, A. Boldrini, G. Cioni and L. Maffei, “Massage Accelerates Brain Development and the Maturation of Visual Function,” The Journal of Neuroscience, Vol. 29, No. 18, 2009, pp. 6042-6051. doi:10.1523/JNEUROSCI.5548-08.2009

[33]   S. Richards, R. Mychasiuk, B. Kolb and R. Gibb, “Tactile Stimulation during Development Alters Behaviour and Neuroanatomical Organization of Normal Rats,” Behavioral Brain Research, Vol. 231, No. 1, 2012, pp. 86-91. doi:10.1016/j.bbr.2012.02.043

[34]   J. G. Vanderbergh, “Prenatal Hormone Exposure and Sexual Variation,” American Scientist, Vol. 91, No. 3, 2003, pp. 218-225. doi:10.1511/2003.3.218

[35]   A. Lynch, “Postnatal Undernutrition: An Alternative Method,” Developmental Psychobiology, Vol. 9, No. 1, 1976, pp. 39-48. doi:10.1002/dev.420090107

[36]   J. Altman and S. S. Bayer, “Atlas of Prenatal Rat Brain Development,” CRC Press, Boca Raton, 1995.

[37]   G. Paxinos and C. H. Watson, “The Rat Brain in Stereotaxic Coordinates,” Academic Press Inc., San Diego, 1986.

[38]   D. A. Sholl, “The Organization of the Cerebral Cortex,” Halfner Publishing Company, New York, 1956.

[39]   D. N. Spinelli, F. E. Jensen and G. Viana Di Prisco, “Early Experience Effect on Dendritic Branching in Normally Reared Kittens,” Experimental Neurology, Vol. 68, No. 1, 1980, pp. 1-11. doi:10.1016/0014-4886(80)90063-1

[40]   D. A. Callison and J. W. Spencer, “Effect of Chronic Undernutrition and/or Visual Deprivation upon the Visual Evoked Potential from the Developing Rat Brain,” Developmental Psychobiology, Vol. 1, No. 3, 1968, pp. 196204. doi:10.1002/dev.420010308

[41]   L. Rubio, C. Torrero, M. Regalado and M. Salas, “Alterations in the Solitary Tract Nucleus of the Rat Following perinatal Food Restriction and Subsequent Nutritional Rehabilitation,” Nutritional Neuroscience, Vol. 7, No. 5, 2004, pp. 291-300. doi:10.1080/10284150400019922

[42]   C. Torrero, M. Regala-do, E. Perez, L. Rubio and M. Salas, “Neonatal Food Restriction and Binaural Ear Occlusion Interfere with the Maturation of Cortical Motor Pyramids in the Rat,” Nutritional Neuroscience, Vol. 8, No. 1, 2005, pp. 63-66. doi:10.1080/10284150400027131

[43]   G. E. Evoniuk, C. M. Kuhn and S. M. Schanberg, “The Effect of Tactile Stimulation on Serum Growth Hormone and Tissue Ornithine Decarboxylase Activity during Maternal Deprivation in Rat Pups,” Communications in Psychopharmacology, Vol. 3, No. 5, 1979, pp. 363-370

[44]   S. M. Schanberg, G. Evoniuk and C. M. Kuhn, “Tactile and Nutrition Aspects of Maternal Care: Specific Regulator of Neuroendocrine Function and Cellular Development,” Experimental Biology and Medicine, Vol. 175, No. 2, 1984, pp. 135-146.

[45]   S. B. Hoath and W. L. Pickens, “Effect of Thyroid Hormone and Epidermal Growth Factor on Tactile Hair Development and Craniofacial Morphogenesis in the Postnatal Rat,” Journal of Craniofacial Genetics and Developmental Biology, Vol. 7, No. 2, 1987, pp. 161-167.

[46]   G. Calamandrei, F. Cirulli, E. Alleva and L. Aloe, “Nerve Growth Factor Does Not Ameliorate The Infantile Forgetting Syndrome of Neonatal Mice,” Monitore Zoologico Italiano, Vol. 22, No. 2, 1988, pp. 235-243.

[47]   T. Field and M. Diego, “Vagal Activity, Early Growth and Emotional Development,” Infant Behavior and Development, Vol. 31, No. 3, 2008, pp. 361-373. doi:10.1016/j.infbeh.2007.12.008

[48]   S. A. Swanger and G. J. Bassell, “Making and Breaking Synapses through Local mRNA Regulation,” Current Opinion in Genetics and Development, Vol. 21, No. 4, 2011, pp. 414-421. doi:10.1016/j.gde.2011.04.002

[49]   S. Kindler and H. J. Kreienkamp, “Dendritic mRNA Targeting and Translation,” In: M. R. Kreutz and C. Sala, Eds., Synaptic Plasticity, Vol. 970, 2012, pp. 285-305. doi:10.1007/978-3-7091-0932-8_13

[50]   C. F. Hale, K. C. Dietz, J. A. Varela, C. V. Wood, B. C. Zirlin, L. S. Leverich, R. W. Greene and C. W. Cowan, “Essential Role of Vav Guanine Nucleotide Exchange Factors in Brain-Derived Neurotrophic Factor-Induced Dendritic Spine Growth and Synapse Plasticity,” The Journal of Neuroscience, Vol. 31, No, 35, 2011, pp. 12426-12436. doi:10.1523/JNEUROSCI.0685-11.2011

[51]   J. L. Smart, “Maternal Behaviour of Undernourished Mother Rats towards Well Fed and Underfed Young,” Physiology & Behavior, Vol. 16, No. 2, 1976, pp. 147149. doi:10.1016/0031-9384(76)90298-5

[52]   J. R. Galler and K. J. Propert, “Early Maternal Behaviors Predictive of the Survival of Suckling Rats with Intergenerational Malnutrition,” Journal of Nutrition, Vol. 112, No. 2, 1982, pp. 332-337.

[53]   M. Salas, C. Torrero and S. Pulido, “Long-Term Alterations in the Maternal Behavior of Neonatally Undernourished Rats,” Physiology & Behavior, Vol. 33, No. 2, 1984, pp. 273-278. doi:10.1016/0031-9384(84)90111-2

[54]   M. R. Rosenzweig and E. L. Bennett, “Psychobiology of Plasticity: Effects of Training and Experience on Brain and Behavior,” Behavioural Brain Research, Vol. 78, No. 1, 1996, pp. 57-65. doi:10.1016/0166-4328(95)00216-2

[55]   T. Ueyama, Y. Kawai, K. Nemoto, M. Sekimoto, S. Toné and E. Senba, “Immobilization Stress Reduced the Expression of Neurotrophins and Their Receptors in the Rat Brain,” Neuroscience Research, Vol. 28, No. 2, 1997, pp. 103-110. doi:10.1016/S0168-0102(97)00030-8

[56]   H. Young, R. Baum, U. Cremerius and K. Herholz, O. Hoekstra, A. A. Lammeritsma, J. Pruim and P. Price (European Organization for Research and Treatment of Cancer (EORTC) PET Study Group), “Measurement of Clinical and Subclinical Tumour Response Using (18F)Fluorodeoxyglucose and Positron Emission Tomography: Review and 1999 EORTC Recommendations,” European Journal of Cancer, Vol. 35, No. 13, 1999, pp. 17731782. doi:10.1016/S0959-8049(99)00229-4

[57]   J. Sala-Catala, C. Torrero, M. Regalado, M. Salas and A. Ruiz-Marcos, “Movements Restriction and Alterations of the Number of Spines Distributed along the Apical Shafts of Layer V Pyramids in Motor and Primary Sensory Cortices of the Peripubertal and Adult Rat,” Neuroscience, Vol. 133, No. 1, 2005, pp. 137-145. doi:10.1016/j.neuroscience.2005.01.009

[58]   V. Occelli, C. Spence and M. Zampini, “Audiotactile Interactions in Temporal Perception,” Psychonomic Bulleting & Review, Vol. 18, No. 3, 2011, pp. 429-454. doi:10.3758/s13423-011-0070-4

[59]   A. Berry, E. Bindocci and E. Alleva, “NGF, Brain and Behavioral Plasticity,” Neural Plasticity, Vol. 2012, 2012, Article ID: 784040. doi:10.1155/2012/784040