A New Algorithm for Computing the Determinant and the Inverse of a Pentadiagonal Toeplitz Matrix

Show more

References

[1] [1] X. G. Lv, T. Z. Huang and J. Le, “A Note on Computing the Inverse and the Determinant of a Pentadiagonal Toeplitz Matrix,” Applied Mathematics and Computation, Vol. 206, No. 1, 2008, pp. 327-331.
doi:10.1016/j.amc.2008.09.006

[2] E. Kilic and M. Ei-Mikkawy, “A Computational Algorithm for Special nth Order Pentadiagonal Toeplitz Determinants,” Applied Mathematics and Computation, Vol. 199, No. 2, 2008, pp. 820-822.
doi:10.1016/j.amc.2007.10.022

[3] J. M. McNally, “A Fast Algorithm for Solving Diagonally Dominant Symmetric Pentadiagonal Toeplitz Systems,” Journal of Computational and Applied Mathematics, Vol. 234, No. 4, 2010, pp. 995-1005.
doi:10.1016/j.cam.2009.03.001

[4] S. S. Nemani, “A Fast Algorithm for Solving Toeplitz Penta-Diagonal Systems,” Applied Mathematics and Computation, Vol. 215, No. 11, 2010, pp. 3830-3838.

[5] Y. H. Chen and C. Y. Yu, “A New Algorithm for Computing the Inverse and the Determinant of a Hessenbert Matrix,” Applied Mathematics and Computation, Vol. 218, 2011, pp. 4433-4436.
doi:10.1016/j.amc.2011.10.022

[6] G. H. Golub and C. F. Van Loan, “Matrix Computations,” 3rd Edition, Johns Hopkings University Press, Baltimore and London, 1996, pp. 193-202.