JBPC  Vol.4 No.2 , May 2013
Theoretical investigation of the dispersion interaction in argon dimer and trimer
ABSTRACT

The ultimate aim of the present work is to establish an acceptable level of computation for the van der waals (vdw) complexes that is able to pick up appreciable amount of dispersion interaction energy, reproduce the equilibrium separation within the acceptable limits and at the same time cost and time effective. In order to reach this aim vdw clusters where pure isotropic dispersion interaction occur, namely, Ar dimer and trime were investigated. Computations using different basis sets and at different levels of theory have been carried out. Three basis sets, namely, the 6-31++G**, the 6-311++G** and the aug-cc-pvdz basis set, were found superior to all other basis sets used. The high performance and relative small CPU time of the 6-31++G** basis set make it a good candidate for use with large vdw clusters, especially those of interest in biology. Three compound methods were applied in the present work, namely G1, G2 and G2 Moller-Plesset (MP2) and the complete basis set method, CBS-Q. These methods failed to detect the attraction dispersion interaction in the dimer. The predicted repulsive interaction seems dominant in all these methods. Some of the recently developed Density Functional Theory (DFT) methods that were parameterized to account for the dispersion interaction were also evaluated in the present work. Results come to the conclusion that, in contrast to the claims made, state-of-the-art Density Functional Theory methods are incapable of accounting for dispersion effects in a quantitative way, although these methods predict correctly the inter-atomic separations and are thus considered a real improvement over the conventional methods. BS-SE has been computed, analyzed and discussed.


Cite this paper
Quasti, A. and Hassan, W. (2013) Theoretical investigation of the dispersion interaction in argon dimer and trimer. Journal of Biophysical Chemistry, 4, 91-101. doi: 10.4236/jbpc.2013.42013.
References
[1]   R. A. Aziz and M. J. Slaman, “The Argon and Krypton Interatomic Potentials Revisited,” Molecular Physics, Vol. 58, No. 4, 1986, p. 679.

[2]   R. A. Aziz and H. H. Chen, “An Accurate Intermolecular Potential for Argon,” Journal of Chemical Physics, Vol. 67, No. 12, 1977, p. 5179. doi:10.1063/1.434827

[3]   R. A. Aziz, “Molecular Physics: An International Journal at the Interface between Chemistry and Physics,” Molecular Physics, Vol. 38, No. 1, 1979, p. 177. doi:10.1080/00268977900101591

[4]   J. J. Van den Biesen, R. M. Hermans and C. J. N. Van den Meijdenberg, “Experimental Total Collision Cross Sections in the Glory Region for Noble Gas Systems,” Physica A, Vol. 115, No. 396, 1982, pp. 396-439.

[5]   A. Koide, W. J. Meath and A. R. Allnatt, “Molecular Physics: An International Journal at the Interface between Chemistry and Physics,” Molecular Physics, Vol. 39, No. 4, 1980, pp. 895-911. doi:10.1080/00268978000100771

[6]   C. Douketis, G. Scoles, S. Marchetti, M. Zen and A. J. Thakkar, “Intermolecular Forces via Hybrid Hartree-Fock-SCF Plus Damped Dispersion (HFD) Energy Calculations. An Improved Spherical Model,” Journal of Chemical Physics, Vol. 76, No. 6, 1982, p. 3057. doi:10.1063/1.443345

[7]   U. Buck, M. J. Dondi, U. Valbusa, M. L. Klein and G. Scoles, “Determination of the Interatomic Potential of Krypton,” Physical Review A, Vol. 8, No. 5, 1973, pp. 2409-2416. doi:10.1103/PhysRevA.8.2409

[8]   L. Goubert, E. Desoppere, W. Wieme, R. Polak, I. Paidarova and G. D. Billing, “Semiclassical Study of Ar2*(3. SIGMA.u+) Excimers in a Pure Ar Afterglow by Means of a Diatomics-in-Molecules Potential Energy Surface for the Ar3* System,” Journal of Chemical Physics, Vol. 99, No. 42, 1995, Article ID: 15479. doi:10.1021/j100042a023

[9]   S. Weiss, “Dimer and Trimer Formation in Dense Gaseous Argon:? A MD Study,” Journal of Chemical Physics, Vol. 101, No. 18, 1997, pp. 3367-3370. doi:10.1021/jp970057g

[10]   L. L. Lawrence, “Rotational Dependence of Turning Point Surfaces and Vibrational Frequencies for Lennard-Jones Argon Clusters,” Molecular Physics, Vol. 91, No. 6, 1997, p. 1097. doi:10.1080/00268979709482797

[11]   P. R. Herman, A. A. Madej and B. P. Stoicheff, “Rovibronic Spectra of Ar2 and Coupling of Rotation and Electronic Motion,” Chemical Physics Letters, Vol. 134, No. 3, 1987, pp. 209-213. doi:10.1016/0009-2614(87)87123-3

[12]   K. Liu, M. J. Elrod, J. G. Loser, J. D. Cruzan, N. Pugliano, M. G. Brown, J. Rzepiela and R. J. Saykally, “Far-IR Vibration-Rotation-Tunnelling Spectroscopy of the Water Trimer,” Faraday Discussion, Vol. 97, No. 35, 1994, pp. 35-41.

[13]   R. N. Pribble and T. S. Zwier, “Probing Hydrogen Bonding in Benzene-(Water)N Clusters Using Resonant iondip IR Spectroscopy,” Faraday Discussion, Vol. 97, No. 229, 1994, pp. 229-241.

[14]   R. E. Howard, T. L. Plank, S. R. Trussell and B. Saadevadi, Chemical Physics Letters, Vol. 142, No. 1-2, 1987, pp. 33-36. doi:10.1016/0009-2614(87)87245-7

[15]   R. Kalus, “Formation of Argon Dimers in Ternary Monomer Collisions—A Classical Trajectory Study,” Journal of Chemical Physics, Vol. 109, No. 19, 1998, p. 8289. T. A. Beu, J. Onoe and K. Takeuchi, “Homogeneous and Mixed UF6 Clusters with Ar: Calculations of Structures and Vibrational Spectra,” Journal of Chemical Physics, Vol. 109, No. 19, 1998, p. 8295.

[16]   M. Kamiya, T. Tsuneda and K. Hirao, “A Density Functional Study of van der Waals Interactions,” Journal of Chemical Physics, Vol. 117, No. 13, 2002, p. 6010. doi:10.1063/1.1501132

[17]   D. E. Woon, “Accurate Modeling of Intermolecular Forces: A Systematic M?ller-Plesset Study of the Argon Dimer Using Correlation Consistent Basis Sets,” Journal of Chemical Physics Letters, Vol. 204, No. 1-2, 1993, pp. 29-35. doi:10.1016/0009-2614(93)85601-J

[18]   R. A. Aziz, “A Highly Accurate Interatomic Potential for Argon,” Journal of Chemical Physics, Vol. 99, No. 6, 1993, p. 4518. doi:10.1063/1.466051

[19]   Gaussian, B. Revision, Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez and J. A. Pople, Gaussian, Inc., Pittsburgh, 2009.

[20]   S. F. Boys and F. Bernardi, “The Calculation of Small Molecular Interactions by the Differences of Separate Total Energies. Some Procedures with Reduced Errors,” Modern Physics, Vol. 19, No. 553, 1970, pp. 553-566.

[21]   B. Liu and A. D. Mclean, “Accurate Calculation of the Attractive Interaction of Two Ground State Helium Atoms,” Journal of Chemical Physics, Vol. 59, No. 8, 1973, p. 4557. doi:10.1063/1.1680654

[22]   K. R. Liedl, S. Sekusak and E. Mayer, “Has the Dimer of Carbonic Acid a Lower Energy than Its Constituents Water and Carbon Dioxide?” Journal of American Chemical Society, Vol. 119, No. 16, 1997, p. 3782. doi:10.1021/ja961802q

[23]   J. A. Pople, M. Head-Gordon, D. F. Fox, K. Raghavachari and L. A. Curtiss, “Gaussian-1 Theory: A General Procedure for Prediction of Molecular Energies,” Journal of Chemical Physics, Vol. 90, No. 10, 1989, p. 5622. doi:10.1063/1.456415

[24]   L. A. Curtiss, K. Raghavachari, G. W. Trucks and J. A. Pople, “Gaussian-2 Theory for Molecular Energies of First-and Second-Row Compounds,” Journal of Chemical Physics, Vol. 94, No. 11, 1991, p. 7221. doi:10.1063/1.460205

[25]   L. A. Curtiss, K. Raghavachari and J. A. Pople, “Gaussian-2 Theory Using Reduced M?ller-Plesset Orders,” Journal of Chemical Physics, Vol. 98, No. 2, 1993, p. 1293. doi:10.1063/1.464297

[26]   J. W. Ochtreski, G. A. Petersson and J. A. Montgomery, “A Complete Basis Set Model Chemistry. V. Extensions to Six or More Heavy Atoms,” Journal of Chemical Physics, Vol. 104, No. 7, 1996, p. 2598. doi:10.1063/1.470985

[27]   M. Kamiya, T. Tsuneda and K. Hirao, “A Density Functional Study of van der Waals Interactions,” Journal of Chemical Physics, Vol. 117, No. 13, 2002, p. 6010. doi:10.1063/1.1501132

[28]   Q. Wu and W. Yang, “Empirical Correction to Density Functional Theory for van der Waals Interactions,” Journal of Chemical Physics, Vol. 116, No. 2, 2002, p. 515. doi:10.1063/1.1424928

[29]   J. M. Perez-Jorda, E. S. Fabian and A. J. Perez-Jimenez, “Density-Functional Study of van der Waals Forces on Rare-Gas Diatomics: Hartree-Fock Exchange” Journal of Chemical Physics, Vol. 110, No. 4, 1999, p. 1916.

[30]   S. Grimme, “Density Functional Theory with London Dispersion Corrections,” Advanced Reviews, Vol. 1, No. 1, 2011, pp. 211-228.

[31]   S. Grimme, J. Antony, T. Schwabe and C. Mück-Lichtenfeld, “Density Functional Theory with Dispersion Corrections for Supramolecular Structures, Aggregates, and Complexes of (Bio)Organic Molecules,” Organic & Biomolecular Chemistry, Vol. 5, 2007, pp. 741-758. doi:10.1039/b615319b

[32]   J. Gr?fenstein and D. Cremer, “An Efficient Algorithm for the Density-Functional Theory Treatment of Dispersion Interactions,” Journal of Chemical Physics, Vol. 130, No. 12, 2009, Article ID: 124105. doi:10.1063/1.3079822

 
 
Top