Back
 OJPC  Vol.3 No.2 , May 2013
Methane Steam Reforming on Supported Nickel Based Catalysts. Effect of Oxide ZrO2, La2O3 and Nickel Composition
Abstract: The catalytic properties of Ni (4 and 10 wt%) supported on both La2O3 and ZrO2 were investigated for the methane steam reforming reaction between 475℃ and 700℃ at atmospheric pressure. The catalysts were prepared by the impregnation method and characterized by several techniques (atomic absorption, BET method, X-ray diffraction and TG-TPO). The catalytic activity of Ni/support systems strongly depends on both of the nature and physico-chemical properties of the support. No deactivation was observed in catalytic systems, whatever the reaction temperature indicating high stability of the catalyst.
Cite this paper: A. Belhadi, M. Trari, C. Rabia and O. Cherifi, "Methane Steam Reforming on Supported Nickel Based Catalysts. Effect of Oxide ZrO2, La2O3 and Nickel Composition," Open Journal of Physical Chemistry, Vol. 3 No. 2, 2013, pp. 89-96. doi: 10.4236/ojpc.2013.32011.
References

[1]   B. Neumann and K. Jacob, “Equilibrium in Formation of Methane from Carbon Monoxide and Hydrogen, or from Carbon Dioxide and Hydrogen,” Schrift für Elektrochemie, Vol. 30, 1924, pp. 557-576.

[2]   J. R. Rostrup-Nielsen, “Catalytic Steam Reforming,” In: J. R. Anderson and M. Boudart, Eds., Catalysis: Science and Technology, Springer-Verlag, New York, 1984, pp. 1-117. doi:10.1007/978-3-642-93247-2_1

[3]   K. Hou and R. Hughes, “The Kinetics of Methane Steam Reforming over a Ni/a-Al2O Catalyst,” Chemical Engineering Journal, Vol. 82, No. 1-3, 2001, pp. 311-328. doi:10.1016/S1385-8947(00)00367-3

[4]   S. Zhang, J. Wang and X. Wang, “Effect of Calcination Temperature on Structure and Performance of Ni/TiO2-SiO2 Catalyst for CO2 Reforming of Methane,” Journal of Natural Gas Chemistry, Vol. 17, No. 179, 2008, pp. 179-183. doi:10.1016/S1003-9953(08)60048-1

[5]   V. R Choudhary, B. S Uphade and A. S. Mamman, “Simultaneous Steam and CO2 Reforming of Methane to Syngas over NiO/MgO/SA-5205 in Presence and Absence of Oxygen,” Applied Catalysis A: General, Vol. 168, No. 1, 1998, pp. 33-46. doi:10.1016/S0926-860X(97)00331-1

[6]   J. H. Kim, D. J. Suh, T. J. Park and K. L. Kim, “Effect of Metal Particle Size on Coking during CO2 Reforming of CH4 over Ni-Alumina Aerogel Catalysts,” Applied Catalysis A: General, Vol. 197, No. 2, 2000, pp. 191-200.

[7]   L. V. Mattos, E. R. de Oliveira, P. D. Resende, F. B. Noronha and F. B. Passos, “Partial Oxidation of Methane on Pt/Ce-ZrO2 Catalysts,” Catalysis Today, Vol. 77, No. 3, 2002, pp. 245-256. doi:10.1016/S0920-5861(02)00250-X

[8]   F. B. Noronha, E. C. Fendley, R. R. Soares, W. E. Alvarez and D. E. Resasco, “Correlation between Catalytic Activity and Support Reducibility in the CO2 Reforming of Methane over Pt/CexZr1-xO2 Catalysts,” Chemical Engineering Journal, Vol. 82, No. 1-3, 2001, pp. 21-31. doi:10.1016/S1385-8947(00)00368-5

[9]   H. S. Roh, K. W. Jun, W. S. Dong, J. S. Chang, S. E. Park and J. Yung-II, “Highly Active and Stable Ni/Ce-ZrO2 Catalyst for H2 Production from Methane,” Journal of Molecular Catalysis A: Chemical, Vol. 181, No. 1-2, 2002, pp. 137-142. doi:10.1016/S1381-1169(01)00358-2

[10]   Y. Wang, Y. H. Chin, R. T. Rozmiarek, B. R. Johnson, Y. Gao, J. Watson, A. Y. L. Tonkovich and D. P. V. Wiel. “Highly Active and Stable Rh/MgO-Al2O3 Catalysts for Methane Steam Reforming,” Catalysis Today, Vol. 98, No. 4, 2004, pp. 575-581. doi:10.1016/j.cattod.2004.09.011

[11]   T. Borowiecki, W. Gac and A. Denis, “Effects of Small MoO3 Additions on the Properties of Nickel Catalysts for the Steam Reforming of Hydrocarbons: III. Reduction of Ni-Mo/ Al2O3 Catalysts,” Applied Catalysis A: General, Vol. 270, No. 1-2, 2004, pp. 27-36. doi:10.1016/j.apcata.2004.03.044

[12]   T. Wu, Q. Yan and H. Wan, “Partial Oxidation of Methane to Hydrogen and Carbon Monoxide over a Ni/TiO2 Catalyst,” Journal of Molecular Catalysis A: Chemical, Vol. 226, No. 1, 2005, pp. 41-48. doi:10.1016/j.molcata.2004.09.016

[13]   V. R. Choudhary, S. Banerjee and A. M. Rajput, “Hydrogen from Step-Wise Steam Reforming of Methane over Ni/ZrO2: Factors Affecting Catalytic Methane Decomposition and Gasification by Steam of Carbon Formed on the Catalyst,” Applied Catalysis A: General, Vol. 234, No. 1-2, 2002, pp. 259-270. doi:10.1016/S0926-860X(02)00232-6

[14]   R. Takahashi, S. Sato, T. Sodesawa, M. Yoshida and S. Tomiyama, “Addition of Zirconia in Ni/SiO2 Catalyst for Improvement of Steam Resistance,” Applied Catalysis A: General, Vol. 273, No. 1-2, 2004, pp. 211-215. doi:10.1016/j.apcata.2004.06.033

[15]   Z. W. Liu, K. W. Jun, H. S. Roh, S. C. Baek, S. E. Park, “Pulse Study on the Partial Oxidation of Methane over Ni/a-Al2O3 Catalyst,” Journal of Molecular Catalysis A: Chemical, Vol. 189, No. 2, 2002, pp. 283-293. doi:10.1016/S1381-1169(02)00365-5

[16]   N. Sahli, C. Petit, A. C. Roger, A. Kiennemann, S. Libs and M. M. Bettahar; “Ni Catalysts from NiAl2O4 Spinel for CO2 Reforming of Methane,” Catalysis Today, Vol. 113, No. 3-4, 2006, pp. 187-193. doi:10.1016/j.cattod.2005.11.065

[17]   A. S. AL-Ubaid, “The Activity and Stability of Nickel/Silica Catalysts in Water and Methane Reaction,” Industrial & Engineering Chemistry Research, Vol. 27, No. 5, 1988, pp. 790-795. doi:10.1021/ie00077a013

[18]   M. V. Twigg, “Catalyst Handbook Mansson,” 2nd Edition, Manson Publishing, London, 1994.

[19]   P. Leroi, B. Madani, C. Pham-Huu, M. J. Ledoux, S. Savin-Poncet and J. L. Bousquet, “Ni/SiC: A Stable and Active Catalyst for Catalytic Partial Oxidation of Methane,” Catalysis Today, Vol. 91-92, 2004, pp. 53-58. doi:10.1016/j.cattod.2004.03.009

[20]   J. A. C. Ruiz, F. B. Passos, J. M. C. Bueno, E. F. Souza-Aguiar, L. V. Mattos and F. B. Noronha, “Syngas Production by Autothermal Reforming of Methane on Supported Platinum Catalysts,” Applied Catalysis A: General, Vol. 334, No. 1-2, 2008, pp. 259-267. doi:10.1016/j.apcata.2007.10.011

[21]   C. Lahousse, A. Aboulayt, F. Maugé, J. Bachelier and J. C. Lavalley, “Acidic and Basic Properties of Zirconia-Alumina and Zirconia-Titania Mixed Oxides,” Journal of Molecular Catalysis, Vol. 84, No. 3, 1993, pp. 283-297. doi:10.1016/0304-5102(93)85061-W

[22]   C. R. Jung, J .Han, S. W. Nam, T. H. Lim, S. A. Hong and H. I. Lee, “Selective Oxidation of CO over CuO-CeO2 Catalyst: Effect of Calcination Temperature,” Catalysis Today, Vol. 93-95, 2004, pp. 183-190. doi:10.1016/j.cattod.2004.06.039

[23]   Y. H. Wang and B. Q. Xu, “Comparative Study of Atmospheric and High Pressure CO2 Reforming of Methane over Ni/MgO-AN Catalyst,” Catalysis Letters, Vol. 99, No. 1-2, 2005, pp. 89-96. doi:10.1007/s10562-004-0784-2

[24]   A. Belhadi and O. Cherifi, “Effet des Ajouts Métalliques sur les Catalyseurs à Base de Nickel Supportés sur Silice, Dans la Réaction de Vaporeformage du Méthane,” Journal de la Société Algérienne de Chimie, Vol. 19, No. 1, 2009, pp. 49-61.

[25]   F. Fally, V. Perrichon, H. Vidal, J. Kaspar, G. Blanco, J. M. Pintado, S. Bernal, G. Colon, M. Daturi and J. C. Lavalley, “Modification of the Oxygen Storage Capacity of CeO2-ZrO2 Mixed Oxides after Redox Cycling Aging,” Catalysis Today, Vol. 59, No. 3-4, 2000, pp. 373-386. doi:10.1016/S0920-5861(00)00302-3

[26]   H. Vidal, J. Kaspar, M. Pijolat, G. Colon, S. Bernal, A. Cordón, V. Perrichon and F. Fally, “Redox Behavior of CeO2-ZrO2 Mixed Oxides: I. Influence of Redox Treatments on High Surface Area Catalysts,” Applied Catalysis B: Environmental, Vol. 27, No. 1, 2000, pp. 49-63. doi:10.1016/S0926-3373(00)00138-7

[27]   S. M. Stagg-Williams and D. E. Resasco, “Effect of Promoters on Supported Pt Catalysts for CO2 reforming of CH4,” Studies in Surface Science and Catalysis, Vol. 119, 1998, pp. 813-818. doi:10.1016/S0167-2991(98)80532-6

[28]   S. M. Stagg-Williams, F. B. Noronha, G. Fendley and D. E. Resasco, “CO2 Reforming of CH4 over Pt/ZrO2 Catalysts Promoted with La and Ce Oxides,” Journal of Catalysis, Vol. 194, No. 2, 2000, pp. 240-249. doi:10.1006/jcat.2000.2939

[29]   D. Li, T. Shishido, Y. Oumi, T. Sano and K. Takehira, “Self-Activation and Self-Regenerative Activity of Trace Rh-Doped Ni/Mg(Al)O Catalysts in Steam Reforming of Methane,” Applied Catalysis A: General, Vol. 332, No. 1, 2007, pp. 98-109. doi:10.1016/j.apcata.2007.08.008

 
 
Top