JBPC  Vol.4 No.2 , May 2013
Spin nature of genetic code
Abstract: Nature has developed codon as a tool to manipulate a two-electron spin symmetry (short-living electrons, forming a radical pair, arise from the Mg-bound nucleosidetriphosphate cleavage at the triplet/singlet (T/S) crossing), which permits or forbids further nucleotide synthesis (DNA/RNA) and the synthesis of proteins. The thesis is confirmed by conducting DFT:B3LYP (6-311G** basis set) computations (T/S potential energy surfaces) with the model system composed of the template (C-G-C-G-A nucleotide sequence) and the growing chain (G-C-G nucleotide sequence, DNA or RNA). The origin of codon is in hyperfine interaction between a single electron, transferred onto the template, and three 31P nuclei built into the phosphorus fragments of nucleotides. The nuclei, together with the polynucleotide structure, form a spiral twist that is homeomorphic to a triangle patch on the Poincare sphere. Each triangle has unique angle values depending on the nucleotide nature and their position in the codon. The patch tracing produces the Berry phase changing the electron spin orientation from “up” to “down”. The Berry phase accumulation proceeds around the (T/S) conical intersections (CIs). The CIs are a result of complementary recognition between nucleotide bases at distances exceeding the commonly accepted Watson-Crick pairing by 0.17 A. Upon changing spin symmetry, the DNA or RNA chain is allowed to elongate by attaching a newly coming nucleotide. Without complementary recognition between the bases, the chain stops its elongation. The Berry phase accumulation along the patch tracing explains the effect of Crick’s wobbling when the second nucleotide plays a primary role in recognition. The data is directly linked to creation of a quantum computing device.
Cite this paper: Tulub, A. and Stefanov, V. (2013) Spin nature of genetic code. Journal of Biophysical Chemistry, 4, 52-57. doi: 10.4236/jbpc.2013.42007.

[1]   Chou, K.C., Endres, R.G., Cox, D.L. and Singh, R.R.P. (2004) The quest to high-conductance DNA. Review of Modern Physics, 76, 195-214. doi:10.1103/RevModPhys.76.195

[2]   Crick, F. (1988) Chapter 8: The genetic code. What mad pursuit: A personal view of scientific discovery. Basic Books, New York.

[3]   Crick (1966) Codon-anticodon pairing: The wobble hypothesis. Journal of Molecular Biology, 19, 548-555.

[4]   Tulub, A.A. (2011). Spin effects govern DNA/RNA nucleotide polymerization. Journal of Biophysical Chemistry, 2, 300-309. doi:10.4236/jbpc.2011.23034

[5]   Tulub, A.A. (2008) Mg spin affects adenosinetriphosphate activity. PMC. Physics B, 1, 18. doi:10.1186/1754-0429-1-18

[6]   Berg, J.M., Tymoczko, J.L. and Stryer, L. (2002) Biochemistry. 5th Edition. W. H. Freeman Publishing, New York.

[7]   Korkhin, Y.U., Unligil, O., Littlefield, P., Nelson, D., Stuart, P., Sigler, S. and Abrescia, N. (2009) Evolution of complex RNA polymerases: The complete archaeal RNA polymerase structure. PLoS Biology, 7, 102-128. doi:10.1371/journal.pbio.1000102

[8]   Haas, Y. and Zilberg S. (2004). The use of elementary reaction coordinates in the search of conical intersections. In: Worth, G.A. and Althorpe, S.C., Eds., Quantum dynamics and conical intersections, CCPG Publishing, 145-187.

[9]   Cvade-Menum, B.J. (2003) Using phosphorus-31 nuclear magnetic resonance spectroscopy to characterize organic phosphorus in environmental samples (Chapter 2). In: B.L. Turner, E. Frossard and D.S. Baldwin, Eds., Organic phosphorus in the environment, CABI Pibl, London, 21-45.

[10]   Koptyug, I.V., Sluggett, G.W., Ghatlia, N.D., Landis, M.S., Turro, N.J., Ganapathy, S. and Bentrude, W.G. (1996) Magnetic field dependence of the 31P CIDNP in the photolysis of a benzyl phosphite. Evidence for a T-S mechanism. Journal of Physical Chemistry, 100, 14581-14583. doi:10.1021/jp9619705

[11]   Jockusch, S. and Turro, N.J. (1998) Phosphinoyl Radicals:? Structure and Reactivity. A Laser Flash Photolysis and Time-Resolved ESR Investigation. Journal of American Chemical Society, 120, 11773-11777. doi:10.1021/ja982463z

[12]   Saenger, W. (1984) Principles of nuclear acid structures. Springer Verlag, New York.

[13]   Preuss, M., Schmidt, W.G., Seino, K., Ller, J.F. and Bechstedt, F. (2003) Ground and excited-state properties of DNA base molecules from plane-wave calculations using ultrasoft pseudopotentials. Journal of Computing Chemistry, 25, 112-122. doi:10.1002/jcc.10372

[14]   ?uti?, I. and Das Sarma, S. (2004) Spintronics: Fundamentals and applications. Reviews of Modern Physics, 76, 323-357. doi:10.1103/RevModPhys.76.323

[15]   Hammes-Schiffer, S. and Soudackov, A.V. (2008) Proton-coupled electron transfer in solution, proteins, and electrochemistry. Journal of Physical Chemistry B, 112, 14108-14116. doi:10.1021/jp805876e

[16]   Kahn, O. (1993) Molecular magnetism. VCH Publishers Inc., New York.

[17]   van Lenthe, E., Ad van der, A. and Wormer, P.E.S. (1998) Density functional calculations of molecular hyper?ne interactions in the zero order regular approximation for relativistic effects. Journal of Chemical Physics, 108, 4783-4796. doi:10.1063/1.475889

[18]   Turro, N.J. (1991) Modern molecular photochemistry. University Science Books.

[19]   Koptyug, I.V., Sluggett, G.W., Ghatlia, N.D., Landis, M.S., Turro, N.J., Ganapathy, S. and Bentrude, W.G., (1996) Magnetic Field Dependence of the 31P CIDNP in the Photolysis of a Benzyl Phosphite. Evidence for a T-S Mechanism. Journal of Chemical Physics, 100, 14581-14583. doi:10.1021/jp9619705

[20]   Schutz, B.F. (1982) Geometrical methods of mathematiccal physics. London.

[21]   Bachman, D. (2010) A geometric approach to differential forms. California Polytech. State University Publishers, San Luis Obispo.

[22]   Reta, R. (2000) Manifistation of Berry’s phase in molecules and condensed matter. Journal of Physics-Condensed Matter, 12, 107-143. doi:10.1088/0953-8984/12/9/201

[23]   Berry, M.V. (1984) Quantal phase factors accompanying adi- abatic changes. Proceedings of the Royal Society of London Series A, 392, 45-57.

[24]   Rojo, A.G. and Bloch, A.M. (2010) The rolling sphere, the quantum spin, and a simple view of the Landau-Zener problem. American Journal of Physics, 78, 1014-1024. doi:10.1119/1.3456565

[25]   Mangiarotti, L. and Sardanashvily, G. (2002) Connections in classical and quantum field theory. World Science Publishers, Singapore-New York.

[26]   Boulanger, J., le Bihan, N., Catheline, S. and Rosetto, V. (2012) Observation of a non-adiabatic geometric phase for elastic waves. Annals of Physics, 327, 952-958. doi:10.1016/j.aop.2011.11.014

[27]   ?uti?, I. and Fabian J. (2007) Spintronics: Silicon twists. Nature, 447, 268-269. doi:10.1038/447269a

[28]   Domcke, W., Yarkony, D. and Koppel, H. (2004) Conical intersections: Electronic structure, dynamics and spectroscopy. World Science, New York.

[29]   El-Nabulsbi, R.A. (2012) Lagrangian and hamiltonian dynamics with imaginary time. Journal of Applied Analysis, 18, 283-295.