JMP  Vol.4 No.5 , May 2013
Steady-State and Transient Electron Transport within Bulk InAs, InP and GaAs: An Updated Semiclassical Three-Valley Monte Carlo Simulation Analysis
ABSTRACT

An ensemble Monte Carlosimulation is used to compare high field electron transport in bulk InAs, InP and GaAs. In particular, velocity overshoot and electron transit times are examined. For all materials, we find that electron velocity overshoot only occurs when the electric field is increased to a value above a certain critical field, unique to each material. This critical field is strongly dependent on the material, about 3 kV/cm for InAs, 10 kV/cm for InP and 5 kV/cm for the case of GaAs, We find that InAs exhibits the highest peak overshoot velocity and that this velocity overshoot lasts over the longest distances when compared with GaAs and InP. Finally, we estimate the minimum transit time across a 1 μm InAs sample to be about 2 ps. Similar calculations for InP and GaAs yield 6.6 and 5.4 ps, respectively. We find that the optimal cutoff frequency for an ideal InAs based device ranges from around 79 GHz when the device thickness is set to 1 μm. We thus suggest that indium arsenide offers great promise for future high-speed device applications. The steady-state and transient velocity overshoot characteristics are in fair agreement with other recent calculations.


Cite this paper
A. Guen-Bouazza, C. Sayah, B. Bouazza and N. Chabane-Sari, "Steady-State and Transient Electron Transport within Bulk InAs, InP and GaAs: An Updated Semiclassical Three-Valley Monte Carlo Simulation Analysis," Journal of Modern Physics, Vol. 4 No. 5, 2013, pp. 616-621. doi: 10.4236/jmp.2013.45089.
References
[1]   H. Cheong, Y. J. Jeon and H. Hwang, Journal of Korean Physical Society, Vol. 44, 2004, p. 697. doi:10.3938/jkps.44.697

[2]   S. Adachi, “GaAs and Related Materials, Bulk Semiconducting and Superlattice Properties,” World Scientific, Singapore City, 1994.

[3]   H. Arabshahi, Modern Physics Letters B, Vol. 22, 2008, pp. 1695-1702. doi:10.1142/S0217984908016364

[4]   C. Moglestue, “Monte Carlo Simulation of Semiconductor Devices,” Chapman and Hall, New York, 1993. doi:10.1007/978-94-015-8133-2

[5]   C. Jacoboni and P. Lugli, “The Monte Carlo Method for Semiconductor and Device Simulation,” Springer-Verlag, New York, 1989. doi:10.1007/978-3-7091-6963-6

[6]   H. Arabshahi, Maejo International Journal of Science and Technology, Vol. 4, 2010, pp. 159-168.

[7]   B. E. Foutz, L. F. Eastman, U. V. Bhapkar and M. Shur, Applied Physics Letters, Vol. 70, 1997, pp. 2849-2854. doi:10.1063/1.119021

[8]   C. Sayah, B. Bouazza, A. Guen-Bouazza and N. E. Chabane-Sari, Afrique Science, Vol. 4, 2008, pp. 186-198.

[9]   S. K. O’Leary, B. E. Foutz, M. S. Shur and L. F. Eastman, Applied Physics Letters, Vol. 87, 2005, Article ID: 222103. doi:10.1063/1.2135876

[10]   S. K. O’Leary, B. E. Foutz, M. S. Shur and L. F. Eastman, Applied Physics Letters, Vol. 88, 2006, Article ID: 152113. doi:10.1063/1.2193469

[11]   M. Fadel, “Contribution à l’Etude du Bruit et du Transport en Régime d’Electrons Chauds Dans l’InP,” Thèse 3ème Cycle Electronique, Université des Sciences et Techniques du Languedoc, Académie de Montpellier, 1983.

[12]   M. Nedjalkov and H. Kosina, Mathematics and Computers in Simulation, Vol. 55, 2001, pp. 191-198.

[13]   J.-L. Thobel, A. Sleiman, P. Bourel, F. Dessenne and L. Baudry, Journal of Applied Physics, Vol. 80, 1996, pp. 928-935. doi:10.1063/1.362903

 
 
Top