AJAC  Vol.4 No.5 , May 2013
Sorption Kinetics, Isotherm and Thermodynamic Modeling of Defluoridation of Ground Water Using Natural Adsorbents

The aim of study is to investigate the removal ability of some natural adsorbents for fluoride ion from aqueous solution. The batch dynamic adsorption method was carried out at neutral pH as the functions of contact time, adsorbent dose, adsorbate concentration, temperature and effect of co-anions, which are commonly present in water. The sorption kinetics and equilibrium adsorption isotherms of fluoride on natural adsorbing materials had been investigated at afore-mentioned optimized. Equilibrium adsorption isotherms, viz., Freundlich and Langmuir isotherms were investigated. Lagergren and Morris-Weber kinetic equations were employed to find the rate constants. The negative enthalpy ΔH = -46.54 KJ·mol-1 and Gibbs free energy calculated was ΔG288-333—(2.07785, 3.08966, 4.1064, 4.90716 and 5.38036 KJ·mol-1) respectively, envisage exothermic and spontaneous nature of sorption.

Cite this paper: A. Balouch, M. Kolachi, F. Talpur, H. Khan and M. Bhanger, "Sorption Kinetics, Isotherm and Thermodynamic Modeling of Defluoridation of Ground Water Using Natural Adsorbents," American Journal of Analytical Chemistry, Vol. 4 No. 5, 2013, pp. 221-228. doi: 10.4236/ajac.2013.45028.

[1]   M. K. Ahmad, S. Islam, S. Rahman, M. R. Haque and M. M. Islam, “Heavy Metals in Water, Sediment and Some Fishes of Buriganga River, Bangladesh,” International Journal of Environmental Research, Vol. 4, No. 2, 2010, pp. 321-332.

[2]   WHO, “Fluorides Environmental Health Criteria 227,” World Health Organization, Geneva, 2002.

[3]   C. M. Zvinowanda, J. O. Okonkwo, P. N. Shabalala and N. M. Agyei, “A Novel Adsorbent for Heavy Metal Remediation in Aqueous Environments,” International Journal of Environmental Science Technology, Vol. 6, No. 3, 2009, pp. 425-434.

[4]   J. Nouri, A. H. Mahvi, A. Babaei and E. Ahmadpour, “Regional Pattern Distribution of Groundwater Fluoride in the Shush Aquifer of Khuzestan County Iran,” Research Report Fluoride, Vol. 39, No. 4, 2006, pp. 321-325.

[5]   P. Goyal, A. Sharma, S. Srivastava and M. M. Srivastava, “Saraca Indica Leaf Powder for Decontamination of Pb: Removal, Recovery, Adsorbent Characterization and Equilibrium Modeling,” International Journal of Environmental Science, Technology, Vol. 5, No. 1, 2008, pp. 27-34.

[6]   S. Ayoob and A. K. Gupta, “Fluoride in Drinking Water: A Review on the Status and Stress Effects,” Critical Review Environmental Science and Technology, Vol. 36, No. 6, 2006, pp. 433-487. doi:10.1080/10643380600678112

[7]   N. Mameri, A. R. Yeddou, H. Lounici, H. Grib, D. Belhocine and B. Bariou, “Defluoridation of Septentrional Sahara Water of North Africa by Electrocoagulation Process Using Bipolar Aluminium Electrodes,” Water Research, Vol. 32, No. 5, 1998, pp. 1604-1610. doi:10.1016/S0043-1354(97)00357-6

[8]   T. Rafique, S. Naseem, M. I. Bhanger and T. H. Usmani, “Fluoride Ion Contamination in the Groundwater of Mithi Sub-District, the Thar Desert, Pakistan,” Environmental Geology, Vol. 56, No. 2, 2008, pp. 317-326. doi:10.1007/s00254-007-1167-y

[9]   WHO, “International Standards for Drinking Water,” 3rd Edition, WHO, Geneva, 2008.

[10]   M. C. Bell and T. G. Ludwig, “The Supply of Fluoride to Man: Ingestion from Water,” In: Fluorides and Human Health, WHO Monograph Series 59, World Health Organization, Geneva, 1970.

[11]   WHO, “Guidelines for Drinking Water Quality,” Vol. II: Health Criteria and Supporting Information, World Health Organization, Geneva, Switzerland, 1984.

[12]   WHO, “Fluorides and Oral Health,” World Health Organization Technical Report Series 846, World Health Organization, Geneva, 1994.

[13]   T. Rafique, S. Naseem, T. H. Usmani, E. Bashir, F. A. Khan and M. I. Bhanger, “Geochemical Factors Controlling the Occurance of High Fluoride Ground Water in the Nagar Parkar Area, Sindh, Pakistan,” Journal of Hazardous Material, Vol. 171, No. 1-3, 2009, pp. 424-430. doi:10.1016/j.jhazmat.2009.06.018

[14]   Y. Cengeloglu, E. Kir and M. Ersoz, “Removal of Fluoride from Aqueous Solution by Using Red Mud,” Separation and Purification Technology, Vol. 28, No. 1, 2002, pp. 81-86. doi:10.1016/S1383-5866(02)00016-3

[15]   A. Tor, N. Danaoglu, G. Arslan and Y. Cengeloglu, “Removal of Fluoride from Water by Using Granular Red Mud: Batch and Column Studies,” Journal of Hazardous Material, Vol. 164, No. 1, 2009, pp. 271-278. doi:10.1016/j.jhazmat.2008.08.011

[16]   R. S. Sathish, N. S. R. Raju, G. S. Raju, G. N. Rao, K. A. Kumar and C. Janardhana, “Equilibrium and Kinetic Studies for Fluoride Adsorption from Water on Zirconium Impregnated Coconut Shell Carbon,” Separation and Purification Technology, Vol. 42, No. 4, 2007, pp. 769-788.

[17]   A. J. Arulanantham, T. R. Krishna and N. Balasubramaniam, “Studies on Fluoride Removal by Coconut Shell Carbon,” Indian Journal of Environmental Health, Vol. 13, No. 5, 1992, pp. 531-536.

[18]   R. L. Ramos, J. R. Utrilla, N. A. Medellin-Castillo and M. S. Polo, “Kinetic Modeling of Fluoride Adsorption from Aqueous Solution onto Bone Char,” Chemical Engineering Journal, Vol. 158, No. 3, 2010, pp. 458-467. doi:10.1016/j.cej.2010.01.019

[19]   G. Alagumuthu and M. Rajan, “Kinetic and Equilibrium Studies on Fluoride Removal by Zirconium (IV): Impregnated Groundnut Shell Carbon,” Hemijska Industrija, Vol. 64, No. 1, 2010, pp. 295-304.

[20]   A. Tor, “Removal of Fluoride from an Aqueous Solution by Using Montmorillonite,” Desalination, Vol. 201, No. 1-3, 2006, pp. 267-276. doi:10.1016/j.desal.2006.06.003

[21]   G. Karthikeyan, M. N. Andal and S. G. Sundar, “Defluoridation Property of Burnt Clay,” Journal of Indian Water Works Association, Vol. 31, No. 4, 1999, pp. 291-300.

[22]   Y. H. Li, S. Wang, A. Cao, D. Zhao, X. Zhang, J. Wei, C. Xu, Z. Luan, D. Ruan, J. Liang, D. Wu and B. Wei, “Adsorption of Fluoride from Water by Amorphous Alumina Supported on Carbon Nanotubes,” Chemical Physics Letters, Vol. 350, No. 5, 2001, pp. 412-416. doi:10.1016/S0009-2614(01)01351-3

[23]   P. K. Shrivastava and A. Deshmukh, “Defluoridation of Water with Natural Zeolite,” Journal of the Institution of Public Health Engineers (India), Vol. 14, No. 2, 1994, pp. 11-14.

[24]   K. Muthukumaran, N. Balasubramaniam and T. V. Ramkrishna, “Removal of Fluoride by Chemically Activated Carbon,” Indian Journal of Environmental Protection, Vol. 12, No. 1, 1995, pp. 514-517.

[25]   Y. H. Li, S. Wang, X. Zhang, J. Wei, C. Xu, Z. Luan and D. Wu, “Adsorption of Fluoride from Water by Aligned Carbon Nanotubes,” Materials Research Bulletin, Vol. 38, No. 3, 2003, pp. 469-476. doi:10.1016/S0025-5408(02)01063-2

[26]   R. X. Liu, J. L. Guo and H. X. Tang, “Adsorption of Fluoride, Phosphate, and Arsenate Ions on a New Type of Ion Exchange Fiber,” Journal of Colloid and Interface Science, Vol. 248, No. 2, 2002, pp. 268-274. doi:10.1006/jcis.2002.8260

[27]   N. I. Chubar, V. F. Samanidou, V. S. Kouts, G. G. Gallios, V. A. Kanibolotsky, V. V. Strelko and I. Z. Zhuravlev, “Adsorption of Fluoride, Chloride, Bromide, and Bromate Ions on a Novel Ion Exchanger,” Journal of Colloid and Interface Science, Vol. 291, No. 1, 2005, pp. 67-74. doi:10.1016/j.jcis.2005.04.086

[28]   D. J. Killedar and D. S. Bhargava, “Effect of Stirring Rate and Temperature on Fluoride Removal by Fishbone Charcoal,” Indian Journal of Environmental Health, Vol. 35, No. 2, 1993, pp. 81-87.

[29]   S. Kumar, “Studies on Desorption of Fluoride from Activated Alumina,” Indian Journal of Environmental Health, Vol. 16, No. 1, 1995, pp. 50-53.

[30]   V. M. Boddu, K. Abburi, I. L. Talbolt and E. D. Smith, “Removal of Hexavalent Chromium from Wastewater Using a New Composite Chitosan Biosorbent,” Environmental Science & Technology, Vol. 39, No. 19, 2003, pp. 4449-4456. doi:10.1021/es021013a

[31]   H. Freundlich, “Uber Die Adsorption in Losungen,” Zeitschrift für Physikalische Chemie, Vol. 57, 1985, pp. 385-470.

[32]   I. Langmuir, “The Adsorption of Gases on Plane Surface of Gases on Plane Surface of Glass, Mica and Platinum,” Journal of the Chemical Society, Vol. 40, No. 9, 1918, pp. 1361-1403. doi:10.1021/ja02242a004

[33]   M. M. Dubinin and L. V. Radushkevich, “Equation of the Characteristic Curve of Activated Charcoal,” Proceedings of the Academy of Sciences of the USSR: Physical Chemistry Section, Vol. 55, No. 1, 1947, pp. 331-337.

[34]   D. B. Singh, D. O. Rupainwar, G. Prasad and K. C. Jayaprakas, “Study on the Cd Removal from Water by Adsorption,” Journal of Hazardous Materials, Vol. 60, No. 1, 1998, pp. 29-40. doi:10.1016/S0304-3894(97)00071-X

[35]   J. R. Memon, S. Q. Memon, M. I. Bhanger, G. Z. Memon, A. El Turki and G. C. Allend, “Characterization of Banana Peel by Scanning Electron Microscopy and FT-IR Spectroscopy and Its Use for Cadmium Removal,” Colloids and Surfaces B: Biointerfaces, Vol. 66, No. 2, 2008, pp. 260-265. doi:10.1016/j.colsurfb.2008.07.001

[36]   I. B. Solangi, S. Memon and M. I. Bhanger, “Removal of Fluoride from Aqueous Environment by Modified Amberlite Resin,” Journal of Hazardous Materials, Vol. 171, No. 1-3, 2009, pp. 815-819. doi:10.1016/j.jhazmat.2009.06.072

[37]   S. Lagergren, “Zur Theorie der Sogenannten Adsorption Gelöster Stoffe, Kungliga Svenska Vetenskapsakademiens,” Handlingar, Vol. 24, No. 4, 1898, pp. 1-39.

[38]   E. Haribabu, Y. D. Upadhya and S. N. Upadhyay, “Removal of Phenols from Effluents by Fly Ash,” Journal of Environmental Studies, Vol. 43, No. 2, 1993, pp. 169-176. doi:10.1080/00207239308710824

[39]   W. J. Weber and J. C. Morris, “Kinetics of Adsorption of Carbon from Solution,” Journal of the Sanitary Engineering Division, American Society of Civil Engineering, Vol. 89, No. 1, 1963, pp. 31-60.

[40]   Y. S. Ho and G. McKay, “Pseudo-Secondorder Model for Sorption Processes,” Process Biochemistry, Vol. 34, No. 4, 1999, pp. 451-456. doi:10.1016/S0032-9592(98)00112-5

[41]   G. Sposito, “The Surface Chemistry of Soils,” Oxford University Press, New York, 1984, p. 81.

[42]   M. N. Khan and A. Sarwar, “Determination of Points of Zero Charge of Natural and Treated Adsorbents,” Surface Review and Letters, Vol. 14, No. 3, 2007, pp. 461-469. doi:10.1142/S0218625X07009517

[43]   Y. Yang, Y. Chun, G. Sheng and M. Huang, “pH-Dependence of Pesticide Adsorption by Wheat-Residue-Derived Black Carbon,” Langmuir, Vol. 20, No. 16, 2004, pp. 6736-6741. doi:10.1021/la049363t