[1] F. Ziegler, “Recent Developments and Future Prospects of Sorption Heat Pump Systems,” International Journal of Thermal Sciences, Paris, Vol. 38, 1999, pp. 191-208.
[2] A. Apte, “Ammonia Absorption Refrigeration Plants the Ideal Refrigeration System for New Millennium,” Transparent Energy Systems Private Limited, Pune, 2006. http://www. tespl.com
[3] K. C. Ng, T. Y. Bong, H. T. Chua and H. L. Bao, “Theoretical and Experimental Analysis of an Absorption Chiller,” International Journal of Refrigeration, London, Vol. 17, 1994, pp. 351-358.
[4] A. Kececiler, H. I. Acar and A. Dogan, “Thermodynamics Analysis of Absorption Refrigeration System with Geothermal Energy: An Experimental Study,” Energy Conversion and Management, London, Vol. 41, 2000, pp. 37-48.
[5] J. Chen and B. Andresen, “Optimal Analysis of Primary Performance Parameters for an Endoreversible Absorption Heat Pumps,” Heat Recovery Systems and CHP, London, Vol. 15, 1995, pp. 723-731.
[6] A. Bejan, J. V. C. Vargas and M. Solokov, “Optimal Allocation of a Heat Exchanger Inventory in Heat-Driven Refrigerators,” International Journal of Heat Mass Transfer, Vol. 38, No. 5, 1995, pp. 2997-3004.
[7] N. E. Wijeysundera, “Analysis of the Ideal Absorption Cycle with External Heat-Transfer Irreversibilities,” Energy, London, Vol. 20, 1995, pp. 123-130.
[8] C. Wu, “Cooling Capacity Optimization of a Waste Heat Absorption Refrigeration Cycle,” Heat Recovery Systems and CHP, Vol. 13, No. 4, 1993, pp. 161-166.
[9] C. Wu, “Specific Heating Load of an Endoreversible Carnot Heat Pump,” International Journal of Ambient Energy, Vol. 14, 1993, pp. 25-28.
[10] K. C. Ng, H. T. Chua and Q. Han, “On the Modeling of Absorption Chillers with External and Internal Irreversibilities,” Applied Thermal Engineering, Vol. 17, No. 5, 1997, pp. 413-425.
[11] H. T. Chua, J. M. Gordon, K. C. Ng and Q. Han, “Entropy Production Analysis and Experimental Confirmation of Absorption Systems,” International Journal of Refrigeration, Vol. 20, No. 3, 1997, pp. 179-190.
[12] K. C. Ng, K. Tu and H. T. Chua et al., “Thermodynamic Analysis of Absorption Chillers: Internal Dissipation and Process Average Temperature,” Applied Thermal Engineering, Vol. 18, No. 8, 1998, pp. 671-682.
[13] H. T. Chua, “Universal Thermodynamic Modeling of Chillers: Special Application to Adsorption Chillers,” Ph.D. Dissertation, National University of Singapore, Singapore, 1998.
[14] H. T. Chua, H. K. Toh, A. Malek and K. C. Ng, K. Srinivasan, “A General Thermodynamic Framework for Understanding the Behavior of Absorption Chillers,” International Journal of Refrigeration, Vol. 23, No. 7, 2000, pp. 491-507.
[15] H. T. Chua, H. K. Toh and K. C. Ng, “Thermodynamic Modeling of an Ammonia-Water Absorption Chiller,” International Journal of Refrigeration, Vol. 25, No. 7, 2002, pp. 896-906.
[16] “Thermo Physical Properties of Refrigerants,” ASHRAE Handbook, 2005.
[17] R. Tillner-Roth and D. G. Friend, “A Helmholtz Free Energy Formulation of the Thermodynamic Properties of the Mixture {Water + Ammonia},” Journal of Physical and Chemical Reference Data, Vol. 27, No. 1, 1998, pp. 63-96.
[18] K. C. Ng, H. T. Chua and K. Tu, “The Role of Internal Dissipation and Process Average Temperature in Chiller Performance and Diagnostics,” Journal of Applied Physics, Vol. 83, No. 4, 1998, pp. 1831-1836.