JBiSE  Vol.6 No.5 , May 2013
The value of magnetic resonance spectroscopy and diffusion tensor imaging in characterization of gliomas growth patterns and treatment efficiency
ABSTRACT

The objective of the study was to assess the usefulness of magnetic resonance spectroscopy (MRS) and diffusion tensor imaging (DTI) in detection of vital tumor cell infiltration presence in peritumoral brain areas and determination of biochemical changes in the brain parenchyma after received treatment. 73 patients with present, morphologically conformed brain gliomas and 77 gliomas patients in remission stage after combined therapy underwent magnetic resonance imaging (MRI) including MRS and DTI. Fractional anisotropy (FA) and metabolite ratios—choline/creatine (Cho/Cr), myoinositol/creatine (MI/Cr), lactate-lipid/creatine (LL/Cr), N-acetyl aspartate/creatine (NAA/Cr)—were measured in the tumor, perifocal edema zone, distant and contra-lateral normal appearing white matter. We observed gradual reduction of Cho/Cr, MI/Cr, LL/Cr mean ratios and step-by-step increase of NAA/Cr, FA mean values in the direction from the tumor to the distant and contra-lateral normal-appearing white matter. LL/Cr ratios within distal normal appearing white matter decreased in patients after radiotherapy/chemotherapy. Our study suggests that MRS and DTI in combination with structural MRI sequences enhance vital glial tumor cells areas and possible infiltration border. MRS and DTI quantitative measurements in the glioma peritumoral area reveal pathological changes, despite the normal signal intensity in structural MRI. We suggest that increased LL/Cr ratios and decreased FA values may have the superior implications in the detecting of glial tumors extent along the white matter tracts. NAA/Cr reduction and Cho/Cr increase may provide additional diagnostic value. LL/Cr ratio in distal normal signal intensity area could be used as radiation/chemotherapy effectiveness criteria, as this will reduce after the received treatment and in remission period.


Cite this paper
Bieza, A. and Krumina, G. (2013) The value of magnetic resonance spectroscopy and diffusion tensor imaging in characterization of gliomas growth patterns and treatment efficiency. Journal of Biomedical Science and Engineering, 6, 518-526. doi: 10.4236/jbise.2013.65066.
References
[1]   Wright, A.J., Fellows, G., Byrnes, T.J., Opstad, K.S., McIntyre, D.J.O., Griffithsm, J.R., Bell, B.A., Clark, C.A., Barrick, T.R. and Howe, F.A. (2009) Pattern recognition of MRSI data shows regions of glioma growth that agree with DTI markers of brain tumor infiltration. Magnetic Resonance in Medicine, 62, 1646-1651. doi:10.1002/mrm.22163

[2]   Garteiser, P., Doblas, S., Watanabe, Y., Saunders, D., Hoyle, J., Lerner, M., He, T., Floyd, R.A. and Towner, R.A. (2010) Multiparametric assessment of the anti-glioma properties of OKN007 by magnetic resonance imaging. Journal of Magnetic Resonance Imaging, 31, 796806. doi:10.1002/jmri.22106

[3]   Kostron, H. and Bauer, R. (2011) Management of recurrent malignant glioma—Neurosurgical strategies. Wiener Medizinische Wochenschrift, 161, 20-21. doi:10.1007/s10354-010-0861-7

[4]   Huang, J., Chen, K., Chen, J., Gong, W., Dunlop, N.M., Howard, O.M., Gao, Y., Bian, X.W. and Wang, J.M. (2010) The G-protein-coupled formylpeptide receptor FPR confers a more invasive phenotype on human glioblastoma cells. British Journal of Cancer, 102, 1052-1060. doi:10.1038/sj.bjc.6605591

[5]   Nelson, S.J. (2011) Assessment of therapeutic response and treatment planning for brain tumors using metabolic and physiological MRI. NMR Biomedicine, 24, 734-749.

[6]   Goebell, E., Fiehler, J., Ding, X.Q., Paustenbach, S., Nietz, S., Heese, O., Kucinski, T., Hagel, C., Westphal, M. and Zeumer, H. (2006) Disarrangement of fiber tracts and decline of neuronal density correlate in glioma patients—A combined diffusion tensor imaging and 1H-MR spectroscopy study. American Journal of Neuroradiology, 27, 1427-1431.

[7]   Bonicelli, C., Bacci, A., Agati, R. and Leonardi, M. (2009) Potential of high field functional MRI in the neuroradiological diagnosis of brain tumours. The Neuroradiology Journal, 22, 534-545.

[8]   Sundgren, P.C., Nagesh, V., Elias, A., Tsien, C., Junck, L., Hassan, G.D.M., Lawrence, T.S., Chenevert, T.L., Rogers, L., McKeever, P. and Cao, Y. (2009) Metabolic alterations: A biomarker for radiation-induced injury of normal brain. An MR spectroscopy study. Journal of Magnetic Resonance Imaging, 29, 291-297. doi:10.1002/jmri.21657

[9]   Costanzo, A.D., Scarabino, T., Trojsi, F., Popolizio, T., Catapano, D., Giannatempo, G.M., Bonavita, S., Portaluri, M., Tosetti, M., Angelo, V.A., Salvolini, U. and Tedeschi, G. (2008) Proton MR spectroscopy of cerebral gliomas at 3T: Spatial heterogeneity, and tumour grade and extent. European Radiology, 18, 1727-1735. doi:10.1007/s00330-008-0938-5

[10]   Oshiro, S., Tsugu, H., Komatsu, F., Abe, H., Onishi, H., Ohmura, T., Iwaasa, M., Sakamoto, S. and Fukushima, T. (2007) Quantitative assessment of gliomas by proton magnetic resonance spectroscopy. Anticancer Research, 27, 3757-3764.

[11]   Sundgren, P.C. (2009) MR spectroscopy in radiation injury. American Journal of Neuroradiology, 30, 14691476. doi:10.3174/ajnr.A1580

[12]   Kallenberg, K., Bock, H., Helms, G., Jung, K., Wrede, A., Buhk, J.H., Giese, A., Frahm, J., Strik, H., Dechent, P. and Knauth, M. (2009) Untreated glioblastoma multiforme: Increased myo-inositol and glutamine levels in the contralateral cerebral hemisphere at proton MR spectroscopy. Radiology, 253, 805-812. doi:10.1148/radiol.2533071654

[13]   Walecki, J., Tarasow, E., Kubas, B., Czemicki, Z., Lewko, J., Podgorski, J., Sokol, M. and Grieb, P. (2003) Hydrogen-1 MR spectroscopy of the peritumoral zone in patients with cerebral glioma: Assessment of the value of the method. Academic Radiology, 10, 145-153. doi:10.1016/S1076-6332(03)80038-7

[14]   Louis, D.N., Ohgaki, H., Wiestler, O.D., Cavenee, W.K., Burger, P.C., Jouvet, A., Scheithauer, B.W. and Kleihues, P. (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathologica, 114, 97109. doi:10.1007/s00401-007-0243-4

[15]   Weybright, P., Sundgren, P.C., Maly, P., Hassan, D.G., Nan, B., Rohrer, S. and Junck, L. (2005) Differentiation between brain tumor recurrence and radiation injury using MR spectroscopy. American Journal of Roentgenology, 185, 1471-1476. doi:10.2214/AJR.04.0933

[16]   Huang, J., Wang, A.M., Shetty, A., Maitz, A.H., Yan, D., Doyle, D., Richey, K., Park, S., Pieper, D.R., Chen, P.Y. and Grills, I.S. (2011) Differentiation between intra-axial metastatic tumor progression and radiation injury following fractionated radiation therapy or stereotactic radiosurgery using MR spectroscopy, perfusion MR imaging or volume progression modeling. Magnetic Resonance Imaging, 29, 993-1001. doi:10.1016/j.mri.2011.04.004

[17]   Smith, E.A., Carlos, R.C., Junck, L.R., Tsien, C.I., Elias, A. and Sundgren, P.C. (2009) Developing a clinical decision model: MR spectroscopy to differentiate between recurrent tumor and radiation change in patients with new contrast-enhancing lesions. Americam Journal of Roentgenology, 192, 45-52. doi:10.2214/AJR.07.3934

[18]   Wang, W., Stewarda, C.E. and Desmonda, P.M. (2009) Diffusion tensor imaging in glioblastoma multiforme and brain metastases: the role of p, q, L, and fractional anisotropy. American Journal of Neuroradiology, 30, 203208. doi:10.3174/ajnr.A1303

[19]   Bulakbasi, N., Kocaoglu, M., Ors, F., Tayfun, C. and Ucoz, T. (2003) Combination of single-voxel proton MR spectroscopy and apparent diffusion coefficient calculation in the evaluation of common brain tumors. American Journal of Neuroradiology, 23, 225-233.

[20]   Iliescu, B., Negru, D. and Poeata, I. (2010) MR tractography for preoperative planning in patients with cerebral tumors in eloquent areas. Romanian Neurosurgery, 17, 413-420.

[21]   Callot, V., Galanaud, D., Fur, Y.L., Gouny, S.C., Ranjeva, J.P. and Cozzone, P.C. (2008) 1H MR spectroscopy of human brain tumours: A practical approach. European Journal of Radiology, 67, 268-274. doi:10.1016/j.ejrad.2008.02.036

[22]   Yen, P.S., Teo, B.T., Chiu, C.H., Chen, S.C., Chiu, T.L. and Su, C.F. (2009) White matter tract involvement in brain tumors: A diffusion tensor imaging analysis. Surgical Neurology, 72, 464-469. doi:10.1016/j.surneu.2009.05.008

[23]   Romano, A., Fasoli, F., Ferrante, M., Ferrante, L., Fantozzi, L.M. and Bozzao, A. (2008) Fiber density index, fractional anisotropy, ADC and clinical motor findings in the white matter of patients with glioblastoma. European Radiology, 18, 331-336. doi:10.1007/s00330-007-0740-9

[24]   Engelhorn, T., Savaskan, N.E., Schwarz, M.A., Kreutzer, J., Meyer, E.P., Hahnen, E., Ganslandt, O., Dorfler, A., Nimsky, C., Buchfelder, M. and Eyupoglu, I.Y. (2009) Cellular characterization of the peritumoral edema zone in malignant brain tumors. Cancer Science, 100, 18561862. doi:10.1111/j.1349-7006.2009.01259.x

[25]   Yamasaki, F., Kurisu, K., Kajiwara, Y., Watanabe, Y., Takayasu, T., Akiyama, Y., Saito, T., Hanaya, R. and Suqiyama, K. (2011) Magnetic resonance spectroscopic detection of lactate is predictive of a poor prognosis in patients with diffuse intrinsic pontine glioma. Neuro-Oncology, 13, 791-801. doi:10.1093/neuonc/nor038

[26]   Salzedo, E., Cortes, M.P., Melancon, D. and Tampieri, D. (2009) Myoinositol trends in different types of brain lesions. The Neuroradiology Journal, 22, 16-21.

[27]   Chernov, M.F., Kubo, O., Hayashi, M., Izawa, M., Maruyama, T., Usukura, M., Ono, Y., Hori, T. and Takakura, K. (2005) Proton MRS of the peritumoral brain. Journal of Neurological Sciences, 22, 137-142. doi:10.1016/j.jns.2004.11.039

[28]   Gerstner, L., Jellinger, K., Heiss, W.D. and Wober, G. (1977) Morphological changes in anaplastic gliomas treated with radiation and chemotherapy. Acta Neurochirurgica, 36, 117-138. doi:10.1007/BF01405993

[29]   Tamura, M., Ohye, C. and Nakazato, Y. (1993) Pathological anatomy of autopsy brain with malignant glioma. Neurologia Medico-Chirurgica, 33, 77-88. doi:10.2176/nmc.33.77

[30]   Yerli, H., Agildere, A.M., Özen, O., Geyik, E., Atalay, B. and Elhan, A.H. (2007) Evaluation of cerebral glioma grade by using normal side creatine as an internal reference in multi-voxel 1H-MR spectroscopy. Diagnostic and Interventional Radiology, 13, 3-9.

 
 
Top