ANP  Vol.2 No.2 , May 2013
Self-Oscillating Structural Polymer Gels
Abstract: self-oscillating polymer gel has become a distinguished class of smart soft materials. Here we fabricated and demonstrated a self-oscillating structural gel network with the incorporation of the Belousov-Zhabotinsky (BZ) reaction. The structural polymer gel oscillates at a macroscopic level with remarkably faster kinetics compared to a normal gel of similar chemical compositions. The structural polymer gel also displays larger oscillating amplitude compared to the normal gel because of the increased diffusion of fluids surrounding the gel particles. This type of structural polymer gels can be harnessed to provide novel and feasible applications in a wide variety of fields, such as drug delivery, nanopatterning, chemical and biosensing, and photonic crystals.
Cite this paper: Pullela, S. , Wang, Q. and Cheng, Z. (2013) Self-Oscillating Structural Polymer Gels. Advances in Nanoparticles, 2, 94-98. doi: 10.4236/anp.2013.22016.

[1]   I. R. Epstein, “Nonlinear Oscillations in Chemical and Biological Systems,” Physica D, Vol. 51, No. 1-3, 1991, pp. 152-160. doi:10.1016/0167-2789(91)90228-2

[2]   R. J. Field, E. Koros and R. Noyes, “Oscillations in Chemical Systems. II. Thorough Analysis of Temporal Oscillation in the Bromate-Cerium-Malonic Acid System,” Journal of the American Chemical Society, Vol. 94, No. 25, 1972, pp. 8649-8664. doi:10.1021/ja00780a001

[3]   R. Yoshida, T. Sakai, O. Tabata and T. Yamaguchi, “Design of Novel Biomimetic Polymer Gels with SelfOscillating Function,” Science and Technology of Advanced Materials, Vol. 3, No. 2, 2002, pp. 95-102. doi:10.1016/S1468-6996(02)00010-4

[4]   S. Nakamaru, S. Maeda, Y. Hara and S. Hashimoto, “Control of Autonomous Swelling?Deswelling Behavior for a Polymer Gel,” Journal of Physical Chemistry B, Vol. 113, No. 14, 2009, pp. 4609-4613. doi:10.1021/jp811228y

[5]   R. Yoshida, T. Takahashi, T. Yamaguchi and H. Ichijo, “Self-Oscillating Gel,” Journal of the American Chemical Society, Vol. 118, No. 21, 1996, pp. 5134-5135. doi:10.1021/ja9602511

[6]   Y. Hara and R. Yoshida, “Control of Oscillating Behavior for the Self-Oscillating Polymer with pH-Control Site,” Langmuir, Vol. 21, No. 21, 2005, pp. 9773-9776. doi:10.1021/la052070v

[7]   Y. Hara and R. Yoshida, “Self-Oscillation of Polymer Chains Induced by the Belousov-Zhabotinsky Reaction under Acid-Free Conditions,” Journal of Physical Chemistry B, Vol. 109, No. 19, 2005, pp. 9451-9454. doi:10.1021/jp0501704

[8]   S. Maeda, Y. Hara, T. Sakai, R. Yoshida and S. Hashimoto, “Self-Walking Gel,” Advanced Materials, Vol. 19, No. 21, 2007, pp. 3480-3484. doi:10.1002/adma.200700625

[9]   V. V. Yashin and A. C. Balazs, “Pattern Formation and Shape Changes in Self-Oscillating Polymer Gels,” Science, Vol. 314, No. 5800, 2006, pp. 798-801. doi:10.1126/science.1132412

[10]   V. V. Yashin, O. Kuksenok and A. C. Balazs, “Modeling Autonomously Oscillating Chemo-Responsive Gels,” Progress in Polymer Science, Vol. 35, No. 1-2, 2010, pp. 155-173. doi:10.1016/j.progpolymsci.2009.10.003

[11]   R. Yoshida, “Self-Oscillating Gels Driven by the Belousov-Zhabotinsky Reaction as Novel Smart Materials,” Advanced Materials, Vol. 22, No. 2010, pp. 3463-3483.doi:10.1002/adma.200904075

[12]   R. Yoshida, “Self-oscillating Polymer Gel as Novel Biomimetic Materials Exhibiting Spatiotemporal Structure,” Colloid and Polymer Science, Vol. 289, No. 5-6, 2011, pp. 475-487. doi:10.1007/s00396-010-2371-y

[13]   T. Asoh, M. Matsusaki, T. Kaneko and M. Akashi, “Fabrication of Temperature-Responsive Bending Hydrogels with a Nanostructured Gradient,” Advanced Materials, Vol. 20, No. 11, 2008, pp. 2080-2083. doi:10.1002/adma.200702727

[14]   C. E. Reese, A. V. Mikhonin, M. Kamenjicki, A. Tikhonov and S. A. Asher, “Nanogel Nanosecond Photonic Crystal Optical Switching,” Journal of the American Chemical Society, Vol. 126, No. 5, 2004, pp. 1493-1496. doi:10.1021/ja037118a

[15]   J. Kim, S. Nayak and L. A. Lyon, “Bioresponsive Hydrogel Microlenses,” Journal of the American Chemical Society, Vol. 127, No. 26, 2005, pp. 9588-9592. doi:10.1021/ja0519076

[16]   Z. Hu and G. A. Huang, “A New Route to Crystalline Hydrogels, Guided by a Phase Diagram,” Angewandte Chemie International Edition, Vol. 42, No. 39, 2003, pp. 4799-4802. doi:10.1002/anie.200351326

[17]   H. Kawaguchi, K. Fujimoto and Y. Mizuhara, “Hydrogel microspheres III. Temperature-Dependent Adsorption of proteins on Poly-N-isopropylacrylamide Hydrogel Microspheres,” Colloid and Polymer Science, Vol. 270, No. 1, 1992, pp. 53-57. doi:10.1007/BF00656929

[18]   T. Sakai, Y. Hara and R. Yoshida, “Phase Transition Behaviors of Self-Oscillating Polymer and Nano-Gel Particles,” Macromolecular Rapid Communications, Vol. 26, No. 14, 2005, pp. 1140-1144. doi:10.1002/marc.200500195

[19]   J. Shen, S. Pullela, M. Marquez and Z. Cheng, “Ternary Phase Diagram for the Belousov-Zhabotinsky ReactionInduced Mechanical Oscillation of Intelligent PNIPAM Colloids,” Journal of Physical Chemistry A, Vol. 111, No. 48, 2007, pp. 12081-12085. doi:10.1021/jp072574x

[20]   E. S. Matsuo and T. Tanaka, “Kinetics of Discon-Tinuous Volume-Phase Transition of Gels,” Journal of Chemical Physics, Vol. 89, No. 3, 1988, pp. 1695-1703. doi:10.1063/1.455115

[21]   T. Tanaka and D. J. Fillmore, “Kinetics of Swelling of Gels,” Journal of Chemical Physics, Vol. 70, No. 3, 1979, pp. 1214-1218. doi:10.1063/1.437602

[22]   E. C. Cho, J. W. Kim, A. Fernandez-Nieves and D. A. Weitz, “Highly Responsive Hydrogel Scaffolds Formed by Three-Dimensional Organization of Microgel Nanoparticles,” Nano Letters, Vol. 8, No. 1, 2008, pp. 168172. doi:10.1021/nl072346e

[23]   S. Maeda, Y. Hara, R. Yoshida and S. Hashimoto, “Peristaltic Motion of Polymer Gels,” Angewandte Chemie International Edition, Vol. 47, No. 35, 2008, pp. 66906693. doi:10.1002/anie.200801347

[24]   A. K. Dutt and M. Menzinger, “Stirring and Mixing Effects on Chemical Instabilities: Bistability of the Bromate/Bromide/Cerium(3+) System,” Journal of Physical Chemistry, Vol. 94, No. 12, 1990, pp. 4867-4870. doi:10.1021/j100375a022