APM  Vol.3 No.3 , May 2013
Torsion Pairs in Triangulated Categories
Abstract: We study the properties of torsion pairs in triangulated category by introducing the notions of d-Ext-projectivity and d-Ext-injectivity. In terms of -mutation of torsion pairs, we investigate the properties of torsion pairs in triangulated category under some conditions on subcategories and in .
Cite this paper: C. Fan and H. Yao, "Torsion Pairs in Triangulated Categories," Advances in Pure Mathematics, Vol. 3 No. 3, 2013, pp. 374-379. doi: 10.4236/apm.2013.33054.

[1]   A. Beilinson, J. Bernstein and P. Deligne, “Faisceaux Pervers,” Asterisque 100, 1982.

[2]   A. Beligiannis and I. Reiten, “Homological and Homotopical Aspects of Torsion Theories,” 2007.

[3]   A. L. Gorodentsev and A. N. Rudakov, “Exceptional Vector Bundles on Projective Spaces,” Duke Mathematical Journal, Vol. 54, No. 1, 1987, pp. 115-130. doi:10.1215/S0012-7094-87-05409-3

[4]   S. Fomin and A. Zelevinsky, “Cluster Algebras I. Foundations,” Journal of American Mathematical Society, Vol. 15, No.2, 2002, pp. 497-529. doi:10.1090/S0894-0347-01-00385-X

[5]   S. Fomin and A. Zelevinsky, “Cluster Algebras II. Finite Type Classification,” Inventiones Mathematicae, Vol. 154, No. 1, 2003, pp. 63-121. doi:10.1007/s00222-003-0302-y

[6]   A. Buan, R. Marsh, M. Reineke, I. Reiten and G. Todorov, “Tilting Theory and Cluster Combinations,” Advances in Mathematics, Vol. 204, No. 2, 2006, pp. 572-618. doi:10.1016/j.aim.2005.06.003

[7]   C. Geiss, B. Leclerc and J. Schroer, “Rigid Modules over Preprojective Algebras,” Inventiones Mathematicae, Vol. 165, No. 3, 2006, pp. 589-632. doi:10.1007/s00222-006-0507-y

[8]   M. Kontsevich, “Triangulated Categories and Geometry,” The école Normale Supérieure, Paris, 1998.

[9]   O. Iyama and Y. Yoshino, “Mutations in Triangulated Categories and Rigid Cohen-Macaulay Modules,” Inventiones mathematicae, Vol. 172, No. 1, 2008, pp. 117-168. doi:10.1007/s00222-007-0096-4

[10]   Y. Zhou and B. Zhu, “Mutation of Torsion Pairs in Triangulated Categories and Its Geometric Realization,”, Los Alamos, 2011.

[11]   M. Auslander and S. O. Smal?, “Almost Split Sequences in Subcategories,” Journal of Algebra, Vol. 69, No. 2, 1981, pp. 426-454. doi:10.1016/0021-8693(81)90214-3

[12]   B. Keller and I. Reiten, “Cluster-Tilted Algebras Are Gorenstein and Stably Calabi-Yau,” Advances in Mathematics, Vol. 211, No. 1, 2007, pp. 123-151. doi:10.1016/j.aim.2006.07.013

[13]   Y. Zhou and B. Zhu, “Cluster Combinatorics of d-Cluster Categories,” Journal of Algebra, Vol. 321, No. 10, 2009, pp. 2898-2915. doi:10.1016/j.jalgebra.2009.01.032