Reference Point Based TR-PSO for Multi-Objective Environmental/Economic Dispatch

Show more

References

[1] S. F. Brodesky and R. W. Hahn, “Assessing the Influence of Power Pools on Emission Constrained Economic Dispatch,” IEEE Transactions on Power Systems, Vol. 1, No. 1, 1986, pp. 57-62. doi:10.1109/TPWRS.1986.4334844

[2] A. Farag, S. Al-Baiyat and T. C. Cheng, “Economic Load Dispatch Multiobjective Optimization Procedures Using Linear Programming Techniques,” IEEE Transactions on Power Systems, Vol. 10, No. 2, 1995, pp. 731-738.
doi:10.1109/59.387910

[3] C. S. Chang, K. P. Wong and B. Fan, “Security-Con strained Multiobjective Generation Dispatch Using Bicriterion Global Optimization,” IEE Proceedings Generation, Transmission & Distribution, Vol. 142, No. 4, 1995, pp. 406-414. doi:10.1049/ip-gtd:19951806

[4] J. X. Xu, C. S. Chang and X. W. Wang, “Constrained Multiobjective Global Optimization of Longitudinal Interconnected Power System by Genetic Algorithm,” IEE Proceedings Generation, Transmission & Distribution, Vol. 143, No. 5, 1996, pp. 435-446.
doi:10.1049/ip-gtd:19960418

[5] J. Zahavi and L. Eisenberg, “Economic-Environmental Power Dispatch,” IEEE Transactions on Systems, Man, and Cybernetics SMC, Vol. 5, No. 5, 1985, pp. 485-489.
doi:10.1109/TSMC.1975.5408370

[6] Y. T. Hsiao, H. D. Chiang, C. C. Liu and Y. L. Chen, “A Computer Package for Optimal Multi-Objective VAR Planning in Large Scale Power Systems,” IEEE Transactions on Power Systems, Vol. 9, No. 2, 1994, pp. 668-676.
doi:10.1109/59.317676

[7] B. S. Kermanshahi, Y. Wu, K. Yasuda and R. Yokoyama, “Environmental Marginal Cost Evaluation by Non-Inferiority Surface,” IEEE Transactions on Power Systems, Vol. 5, No. 4, 1990, pp. 1151-1159.
doi:10.1109/59.99365

[8] M. A. Abido, “A novel Multiobjective Evolutionary Algorithm for Environmental/Economic Power Dispatch,” Electric Power Systems Research, Vol. 65, No. 1, 2003, pp. 71-81. doi:10.1016/S0378-7796(02)00221-3

[9] M. A. Abido, “A Niched Pareto Genetic Algorithm for Multiobjective Environmental/Economic Dispatch,” Electric Power Systems Research, Vol. 25, No. 2, 2003, pp. 97-105. doi:10.1016/S0142-0615(02)00027-3

[10] M. A. Abido, “Environmental/Economic Power Dispatch Using Multiobjective Evolutionary Algorithms,” IEEE Transactions on Power Systems, Vol. 18, No. 4, 2003, pp. 1529-1537. doi:10.1109/TPWRS.2003.818693

[11] K. Deb, “Multi-Objective Optimization Using Evolution ary Algorithms,” Wiley, New York, 2001.

[12] C. M. Fonsecam and P. J. Fleming, “An Overview of Evolutionary Algorithms in Multiobjective Optimization,” Evolution Computing, Vol. 3, No. 1, 1995, pp. 1-16.
doi:10.1162/evco.1995.3.1.1

[13] F. Wang, K. Zhang, C. Wang and L. Wang, “A Variant of Trust-Region Methods for Unconstrained Optimization,” Applied Mathematics and Computation, Vol. 203, No. 1, 2008, pp. 297-307. doi:10.1016/j.amc.2008.04.049

[14] M. Ahookhosh, K. Amini and M. R. Peyghami, “A Non monotone Trust-Region Line Search Method for Large Scale Unconstrained Optimization,” Applied Mathematical Modelling, Vol. 36, No. 1, 2012, pp. 478-487.
doi:10.1016/j.apm.2011.07.021

[15] M. Ahookhosh and K. Amini, “A Nonmonotone, Trust Region Method with Adaptive Radius for Unconstrained Optimization Problems,” Computers & Mathematics with Applications, Vol. 60, No. 3, 2010, pp. 411-422.
doi:10.1016/j.camwa.2010.04.034

[16] Z. Shi and J. Guo, “A New Trust Region Method for Un constrained Optimization,” Journal of Computational and Applied Mathematics, Vol. 213, No. 2, 2008, pp. 509-520.
doi:10.1016/j.cam.2007.01.027

[17] J. Zhang, K. Zhang and S. Qu, “A Nonmonotone Adaptive Trust Region Method for Unconstrained Optimization Based on Conic Model,” Applied Mathematics and Computation, Vol. 217, No. 8, 2010, pp. 4265-4273.
doi:10.1016/j.amc.2010.10.043

[18] B. El-Sobky, “A Global Convergence Theory for an Active Trust Region Algorithm for Solving the General Nonlinear Programming Problem,” Applied Mathematics and Computation, Vol. 144, No. 1, 2003, pp. 127-157.
doi:10.1016/S0096-3003(02)00397-1

[19] Y. Ji, K. Zhang, S. Qu and Y. Zhou, “A Trust-Region Method by Active-Set Strategy for General Nonlinear Optimization,” Computers & Mathematics with Applications, Vol. 54, No. 2, 2007, pp. 229-241.
doi:10.1016/j.camwa.2007.02.003

[20] S. Kim and J. Ryu, “A Trust-Region Algorithm for Bi Objective Stochastic Optimization,” Procedia Computer Science, Vol. 4, 2011, pp. 1422-1430.
doi:10.1016/j.procs.2011.04.153

[21] B. El-Sobky, “An Active-Set Trust-Region Algorithm for Solving Constrained Multi-Objective Optimization Problem,” American Mathematical Society, Vol. 6, 2012, pp. 1599-1612.

[22] J. Kennedy, R. C. Eberhart and Y. Shi, “Swarm Intelli gence,” Morgan Kaufmann, San Francisco, 2001.

[23] M. R. Sierra and C. C. Coello, “Multi-Objective Particle Swarm Optimizers: A Survey of the State-of-the-Art,” International Journal of Computational Intelligence Research, Vol. 2, No. 3, 2006, pp. 287-308.

[24] D. Hazarika and P. K. Bordoloi, “Modi?ed Loss Co-efficients in the Determination of Optimum Generation Scheduling,” IEEE Proceedings, Vol. 138, No. 2, 1991, pp. 166-172.

[25] W. Y. Ng, “Generalized Generation Distribution Factors for Power System Security Evaluations,” IEEE Transactions on Power Apparatus and Systems, Vol. 100, No. 3, 1981, pp. 1001-1005. doi:10.1109/TPAS.1981.316635

[26] C. A. C. Coello, “An Updated Survey of GA-Based Multiobjective Optimization Techniques,” ACM Computing Surveys, Vol. 32, No. 2, 2000, pp. 109-143.
doi:10.1145/358923.358929

[27] V. Pareto, “Cours d’économie Politique, Volume I and II,” F. Rouge, Lausanne, 1896, p. 97.

[28] K. Miettinen, “Nonlinear Multiobjective Optimization,” Kluwer Academic Publishers, Boston, 1999.

[29] A. M. J. Skulimowski, “Classification and Properties of Dominating Points in Vector Optimization,” Mathemati cal Methods of Operations Research, Vol. 58, 1989, pp. 99-112.

[30] R. Byrd, “Robust Trust Region methods for Nonlinearly Constrained Optimization,” A Talk Presented at the Second SIAM Conference on Optimization, Houston, 1987.

[31] E. Omojokun, “Trust-Region Strategies for Optimization with Nonlinear Equality and Inequality Constraints,” Ph.D. Thesis, Department of Computer Science, University of Colorado, Boulder, 1989, pp. 57-87.

[32] M. El-Alem, “A Robust Trust-Region Algorithm with a Non-Monotonic Penalty Parameter Scheme for Con strained Optimization,” SIAM Journal on Optimization, Vol. 5, No. 2, 1995, pp. 348-378. doi:10.1137/0805018

[33] J. Dennis, M. El-Alem and K. Williamson, “A Trust Region Approach to Nonlinear Systems of Equalities and Inequalities,” SIAM Journal on Optimization, Vol. 9, No. 2, 1999, pp. 291-315. doi:10.1137/S1052623494276208

[34] S. K. Hwang, K. Koo and J. S. Lee, “Homogeneous Particle Swarm Optimizer for Multi-Objective Optimization Problem,” ICGST International Journal on Artificial Intelligence and Machine Learning, 2006.

[35] W. F. Abd-El-Wahed, A. A. Mousa and M. A. El-Shorbagy, “Integrating Particle Swarm Optimization with Genetic Algorithms for Solving Nonlinear Optimization Problems,” Journal of Computational and Applied Mathematics, Vol. 235, No. 5, 2011, pp. 1446-1453.
doi:10.1016/j.cam.2010.08.030

[36] A. A. Mousa, M. A. El-Shorbagy and W. F. Abd El-Wahed, “Local Search Based Hybrid Particle Swarm Optimization for Multiobjective Optimization,” International Journal of Swarm and Evolutionary Computation, Vol. 3, 2012, pp. 1-14. doi:10.1016/j.swevo.2011.11.005

[37] A. A. Mousa and M. A. El-Shorbagy, “Enhanced Particle Swarm Optimization Based Local Search for Reactive Power Compensation Problem,” Applied Mathematics, Vol. 3, No. 10A, 2012, pp. 1276-1284.

[38] R. Fletcher, “Practical Methods of Optimization,” 2nd Edition, John Wiley and Sons, Chichester, 1987.

[39] M. S. Osman, M. A. Abo-Sinna and A. A. Mousa, “An ε Dominance-Based Multiobjective Genetic Algorithm for Economic Emission Load Dispatch Optimization Problem,” Electric Power Systems Research, Vol. 79, No. 11, 2009, pp. 1561-1567. doi:10.1016/j.epsr.2009.06.003

[40] R. Ah King, H. Rughooputh and K. Deb, “Evolutionary Multi-Objective Environmental/Economic Dispatch: Stochastic versus Deterministic Approaches,” KanGAL Report No. 2004019, 2004.