ICA  Vol.1 No.2 , November 2010
Analysis and Causal Formulation Proof of an Optimal Iterative Learning Algorithm
Abstract: Iterative learning control (ILC) is used to control systems that operate in a repetitive mode, improving track-ing accuracy of the control by transferring data from one repetition of a task, to the next. In this paper an op-timal iterative learning algorithm for discrete linear systems is analyzed and a solution for its attainment is proposed. Finally the mathematical proof of the algorithm’s causal formulation is also provided in its com-plete form, since its implementation requires its causal formulation.
Cite this paper: nullV. Vita, "Analysis and Causal Formulation Proof of an Optimal Iterative Learning Algorithm," Intelligent Control and Automation, Vol. 1 No. 2, 2010, pp. 90-95. doi: 10.4236/ica.2010.12010.

[1]   Y. Chen and C. Wen, “Iterative Learning Control-Conver- Gence, Robustness and Applications,” Springer Verlag, London, 1999.

[2]   Z. Bien and J. X. Xu, “Iterative Learning Control-Analysis, Design, Integration and Applications,” Kluwer Academic Publishers, Dordrecht, 1998.

[3]   S. Arimoto, S. Kawamura and F. Miyazaki, “Bettering Operation of Dynamic Systems by Learning: A New Control Theory for Servomechanism or Mechatronic Systems,” Proceedings 23rd IEEE Conference on Decision and Control, Las Vegas, Nevada, 1984, pp. 1064-1069.

[4]   N. Amann, D. H. Owens and E. Roger, “Iterative Learning Control for Discrete Time Systems with Exponential Rate of Convergence,” IEE Proceeding of the Institution of Electrical Engineers on Control Theory and Applications, Vol. 143, No. 2, 1996, pp. 217-224.

[5]   K. L. Moore, “Iterative Learning Control for Deterministic Systems,” Advances in Industrial Control Series, Springer- Verlag, London, 1993.

[6]   K. J. Astrom and B. Wittenmark, “Computer controlled systems,” 2nd Edition, Prentice Hall, Englewoods Cliffs, 1990.

[7]   T. Kailath, “Linear Systems,” Prentice Hall, Englewoods Cliffs, 1980.

[8]   N. Amann, “Optimal Algorithms for Iterative Learning Control,” Ph.D. Dissertation, University of Exeter, UK, 1996.