Parallelizing a Code for Counting and Computing Eigenvalues of Complex Tridiagonal Matrices and Roots of Complex Polynomials

Show more

References

[1] F. N. Valvi and V. S. Geroyannis, “Counting and Computing the Eigenvalues of a Complex Tridiagonal Matrix, Lying in a Given Region of the Complex Plane,” International Journal of Modern Physics C, Vol. 24, No. 2, 2013, Article ID: 1350008(1-10).
doi:10.1142/S0129183113500083

[2] W. W. Chen, “Introduction to Complex Analysis,” 2008.
http://rutherglen.science.mq.edu.au/wchen/lnicafolder/lnica.html

[3] V. S. Geroyannis and F. N. Valvi, “A Runge-Kutta Fehlberg Code for the Complex Plane: Comparing with Similar Codes by Applying to Polytropic Models,” International Journal of Modern Physics C, Vol. 23, No. 5, 2012, Article ID: 1250038(1-15).
doi:10.1142/S0129183112500386

[4] D. H. Bailey, “A Fortran 90-Based Multiprecision System,” ACM Transactions on Mathematical Software, Vol. 21, No. 4, 1995, pp. 379-387.
doi:10.1145/212066.212075

[5] D. H. Bailey, “A Fortran-90 Based Multiprecision System,” RNR Technical Report, RNR-94-013, 1995, pp. 1-10.

[6] S. Rombouts and K. Heyde, “An Accurate and Efficient Algorithm for the Computation of the Characteristic Polynomial of a General Square Matrix,” Journal of Computational Physics, Vol. 140, No. 2, 1998, pp. 453-458.
doi:10.1006/jcph.1998.5909

[7] J. Skowron and A. Gould, “General Complex Polynomial Root Solver and Its Further Optimization for Binary Microlenses,” arXiv:1203.1034v1 [astro-ph.EP], 2012, pp. 1-29.