On the Gravitational Two-Body System and an Infinite Set of Laplace-Runge-Lenz Vectors

Show more

References

[1] H. Goldstein, C. P. Poole and J. L. Safko, “Classical Mechanics,” Addison Wesley, Boston, 2001.

[2] S. W. Groesberg, “Advanced Mechanics,” John Wiley & Sons, Inc., Hoboken, 1998.

[3] S. R. Spiegel, “Theoretical Mechanics,” In: Schaum Out line Series, Mc Graw Hill Book Company, New York, 1967.

[4] H. Goldstein, “More on the Prehistory of the Runge-Lenz Vector,” American Journal of Physics, Vol. 44, No. 11, 1976, pp. 1123-1124. doi:10.1119/1.10202

[5] A. Alemi, “Laplace-Runge-Lenz Vector,” 2009.
www.cds.Caltech.edu/Wiki/Alemicds205final.pdf

[6] “Laplace-Runge-Lenz Vector,” Wikipedia, 2013.
http://en.wikipedia.org/wiki/Laplace%E2%80%93Runge%E2%80%93Lenz_vector

[7] P. G. L. Leach and G. P. Flessas, “Generalizations of the Laplace-Runge-Lenz Vector,” Journal of Nonlinear Mathematical Physics, Vol. 10, No. 3, 2003, p. 340.

[8] J. Moser, “Regularization of Kepler’s Problem and the Averaging Method on a Manifold,” Communications on Pure and Applied Mathematics, Vol. 23, No. 4, 1970, pp. 609-636. doi:10.1002/cpa.3160230406

[9] H. H. Rogers, “Symmetry Transformations of the Classical Kepler Problem,” Journal of Mathematical Physics, Vol. 14, No. 8, 1973, p. 1125. doi:10.1063/1.1666448

[10] W. R. Hamilton, “The Hodograph or a New Method of Expressing in Symbolic Language the Newtonian Law of Attraction,” Proceedings of the Royal Irish Academy, Vol. 3, 1847, pp. 344-353.

[11] W. R. Hamilton, “Applications of Quaternions to Some Dynamical Questions,” Proceedings of the Royal Irish Academy, Vol. 3, 1847, Appendix III.

[12] J. Hermann, “Unknown Title,” Giornale de Letterati D’ Italia, Vol. 2, 1710, pp. 447-467.

[13] J. Hermann, “Extrait d’une lettre de M. Herman a’ M datée de Padoüe le 12, Juillet 1710,” Histoire Toire de l’Academie Royale des Sciences (Paris), 1732, pp. 519-521.

[14] J. Bernoulli, “Extrait de la Response de M. Bernoulli a M. Herman date de Basle le 7. October 1710,” Histoire de l’Academie Royale des Sciences (Paris), 1732, pp 521-544.

[15] P. S. Laplace, “Traite de Mecanique Celeste,” Tome I, Premiere Partie, Liver II, 1799, p. 165.

[16] J. W. Gibbs, J. W. Gibbs and E. B. Wilson, “Vector Analysis,” Scribners, New York, 1910, p. 135.

[17] C. Runge, “Vektoranalysis,” Verlag Von S. Hirzel, Leipzig, 1919.

[18] W. Lenz, “Uberden Bewegungsverlauf und Quantenzust Ande der Gestorten Keplerbewegung,” Zeitschrift fur Physik, Vol. 24, No. 1, 1924, pp. 197-207.
doi:10.1007/BF01327245

[19] W. Rindler, “Essential Relaivity,” Springr-Verlag, Berlin, 2006.

[20] N. W. Evans, “Superintegrability in Classical Mechanics,” Physical Review A, Vol. 41, No. 10, 1990, pp. 5666-5676. doi:10.1103/PhysRevA.41.5666

[21] F. D. Lawden, “Tensor Calculus and Relativity,” Chap man and Hall, London, 1975.