Back
 APM  Vol.3 No.3 , May 2013
Chaotic Properties on Time Varying Map and Its Set Valued Extension
Abstract: Every autonomous dynamical system (X, f)induces a set-valued dynamical system on the space of compact subsets of X. In this paper we have investigated some chaotic relations between a nonautonomous dynamical system and its set valued extension.
Cite this paper: A. Khan and P. Kumar, "Chaotic Properties on Time Varying Map and Its Set Valued Extension," Advances in Pure Mathematics, Vol. 3 No. 3, 2013, pp. 359-364. doi: 10.4236/apm.2013.33051.
References

[1]   P. Touhey, “Yet Another Definition of Chaos,” American Mathematical Monthly, Vol. 104, No. 5, 1997, pp. 411-414. doi:10.2307/2974734

[2]   M. Vellekoop and R. Berglund, “On Intervals, Transitivity = Chaos,” American Mathematical Monthly, Vol. 101, No. 4, 1994, 353-355. doi:10.2307/2975629

[3]   J. Banks, J. Brooks, G. Cairns, G. Davis and P. Stacey, “On Devaney’s Definition of Chaos,” American Mathematical Monthly, Vol. 99, No. 4, 1992, pp. 332-334. doi:10.2307/2324899

[4]   S. N. Elaydi, “Discrete Chaos,” Chapman & Hall/CRC, Boca Raton, 2000.

[5]   R. L. Devaney, “An Introduction to Chaotic Dynamical Systems,” 2nd Edition, Addision-Welsey, New York, 1989.

[6]   C. Tian and G. Chen, “Chaos of a Sequence of Maps in a Metric Space,” Chaos, Solitons and Fractals, Vol. 28, No. 4, 2006, pp. 1067-1075. doi:10.1016/j.chaos.2005.08.127

[7]   Y. M. Shi and G. R. Chen, “Chaos of Time-Varying Discrete Dynamical Systems,” Journal of Difference Equations and Applications, Vol. 15, No. 5, 2009, pp. 429-449. doi:10.1080/10236190802020879

[8]   Y. M. Shi, “Chaos in Nonautonomous Discrete Dynamical Systems Approached by Their Subsystems,” RFDP of Higher Education of China, Beijing, 2012.

[9]   P. Sharma and A. Nagar, “Topological Dynamics on Hyperspaces,” Applied General Topology, Vol. 11, No. 1, 2010, pp. 1-19.

[10]   H. Roman-Flores and Y. Chalco-Cano, “Robinsons Chaos in Set-Valued Discrete Systems,” Chaos, Solitons and Fractals, Vol. 25, No. 1, 2005, pp. 33-42.

[11]   J. Banks, “Chaos for Induced Hyperspace Maps,” Chaos, Solitons and Fractals, Vol. 25, No. 3, 2005, pp. 681-685. doi:10.1016/j.chaos.2004.11.089

[12]   H. Roman-Flores, “A Note on Transitivity in Set Valued Discrete Systems,” Chaos, Solution and Fractals, Vol. 17, No. 1, 2003, pp. 99-104. doi:10.1016/S0960-0779(02)00406-X

[13]   R. B. Gu and W. J. Guo, “On Mixing Properties in Set Valued Discrete System,” Chaos, Solitons and Fractals, Vol. 28, No. 3, 2006, pp. 747-754. doi:10.1016/j.chaos.2005.04.004

 
 
Top